
Comparing NoSQL Databases with
YCSB Standard Benchmark

Executive Summary
Benchmark Overview
Test Methodology and Configuration

Test Environment
YCSB Code
Workloads
Reporting Aggregate Results

Couchbase Server Configuration
MongoDB Configuration
Results

YCSB Workload E
Throughput Comparison

Latency Comparison
YCSB Workload A

Throughput Comparison
Latency Comparison

Conclusion
Appendix

Result Data
MongoDB Workload A (Key-Value)
Couchbase Workload A (Key-Value)
MongoDB Workload E (Query)
Couchbase Workload E (Query)

Cost Calculation
Full disclosure details

MongoDB 3.2 vs Couchbase Server 4.5
Published June 2016

2

Executive Summary

Avalon Consulting, LLC. has conducted a YCSB standard benchmark for a series of comparisons between MongoDB 3.2 and Couchbase
Server 4.5. The measurements compared both direct data access with Workload A and querying with Workload E, applying the best
practices from both Couchbase Server and MongoDB. As we did in last year’s benchmark, we focused on performance. Key to
performance is the ability to maintain low latency at high throughput. It is also important to show how these 2 databases perform when
the volume of data is too large to reside in memory.

For the measurement, good hygiene was critically important. To achieve this we have applied a few principles to the measurements.

• Stay loyal to the original definition of YCSB workloads: Unlike some of the other YCSB branded studies, we have used the original
workload definitions for workload A and workload E without any modifications except the item count in the database: Both runs are
executed on 150 million items in the database.

• Use the most popular drivers for both products: we based our tests original github repository with the top “star” and “fork” count
(brianfrankcooper/YCSB). (NOTE: We included a pull request (PR #773) from Couchbase. This version is available as a fork at
https://github.com/Avalon-Consulting-LLC/YCSB. We expect this to be in the upstream repository soon.)

• We have used official published binaries from both companies.

• Ensure results can be repeated by anyone out there: We have fully disclosed the details of the test in this study to allow repeating
the results. Please see the full disclosure details below for detailed instructions and scripts

Overall, Couchbase Server 4.5 has shown a great deal of improvement over the previous runs, while MongoDB results have been similar
to previous measurements. The improvements in Couchbase Server for Workload E (query execution) were due to the new N1QL query
execution engine and memory-optimized Global Secondary Indexes. Workload A with Couchbase Server also has shown that direct data
access is much faster with efficient direct data access with a caching consolidated database that is capable of performing sub-millisecond
latency reads and writes under high throughputs.

The results below show that for both workloads (A and E), Couchbase Server significantly outperformed MongoDB, displaying a far higher
maximum throughput for each under both workloads, while maintaining better latency.

3

Price/Performance Couchbase Server MongoDB

Monthly Cost per (Op/sec)
1
 $0.02 $0.15

Price/Performance Couchbase Server MongoDB

Monthly Cost per (Ops/sec)
2
 $0.36 $1.34

1
 See cost calculation in appendix

2
 See cost calculation in appendix

454,652	

75,367	
0	

100,000	

200,000	

300,000	

400,000	

500,000	

8	Client	Nodes,	280	Total	Threads	

O
pe

ra
ti

on
s	

pe
r	

se
co

nd
	

YCSB	Workload	A	
Maximum	Throughput	

Couchbase	Server	4.5	 MongoDB	3.2	

30,911	

8,246	
0	

10,000	

20,000	

30,000	

40,000	

14	Client	Nodes,	294	Total	Threads	

O
pe

ra
ti

on
s	

pe
r	

se
co

nd
	

YCSB	Workload	E	
Maximum	Throughput	

Couchbase	Server	4.5	 MongoDB	3.2	

4

Benchmark Overview

In order to deliver the personalized, contextualized experiences that today’s customers demand, companies have to harness and utilize the
data behind their business and applications. NoSQL promises to power such applications that need real-time, big data interactions in the
new Digital Economy.

NoSQL databases provide a variety of different approaches for query and data access. For measurements in this study Couchbase Server
and MongoDB were chosen as both support document stores via JSON, providing an agile and flexible approach to data modeling.
However most similarities between these two databases end there. Architecturally both products are very different in how they choose to
provide data access and query execution. The following table summarizes some of these differences.

It is important to note that you will find other reports based on YCSB and you may notice contradicting results. That is why it was
important for this measurement to stay loyal to the definition of the YCSB workloads. Unlike other reports, this measurement did not
modify the query, read or write ratios of workloads or the data types defined by the original benchmark. The measurements kept full
fidelity with the original Workload A (%50 read and %50 update) and Original Workload E (%95 query and %5 insert).

Couchbase Server 4.5 MongoDB 3.2

Query Language SQL-like language for combining best of NoSQL and SQL MongoDB Specific API (.find() etc)

Query Execution Direct Global-Index Access with Subset of Nodes
Engaged in Query Execution Scatter-Gather with all nodes Engaged in Query Execution

Indexing Topologies Global & Local Indexing Local Indexing

Indexing Storage Lock-free Skip-list Indexes B-tree Indexes

High Availability Replica Based Replica Based

Consistency Consistent Data Access with Master based Read/Writes
with Dials for Data Access and Query Consistency

Consistent Data Access with Master based Read/Writes
with Dials for Data Access and Query Consistency

Durability Replication and Disk Based Durability Replication and Disk Based Durability

Caching for Fast Data Access Built-in actively managed, in-heap cache that eliminates
the need to deploy a separate caching tier

Simple caching that requires an added caching tier for
low latency access

5

Test Methodology and Configuration

Test Environment
For the measurements, Avalon used Amazon Web Services EC2 instances. In order to minimize the variances in performance of AWS
instances, each measurement was done 3 times. Both the server side and client side resources are kept identical for both Couchbase
Server and MongoDB measurements. All instances were hosted in a VPC to avoid variance due to noisy neighbors. In addition, virtual
machines were tuned to use AWS enhanced networking to provide maximum network throughput. Avalon created an AMI based on
CentOS 6 with tuned network settings for Couchbase Server, MongoDB and YCSB client instances. 2 SSD storage volumes were used for
each database instance, with indexes on one volume and data on the other.

In our previous benchmark, we limited results to a 5ms latency cap. For this benchmark, we removed that cap and used a fixed set of
node and thread settings, recording the throughput and latency at each setting.

Database Server Resources

Node Count 9

Node Type
C3.8xlarge
32 virtual CPUs with 60 GB RAM and 2 x 320GB SSD Storage with
High Bandwidth Networking

Node OS CentOS 6

Database Client (YCSB) Resources

Node Count 1 to 14

Node Type
R3.8xlarge
32 virtual CPUs with 60 GB RAM and 2 x 320GB SSD Storage
with High Bandwidth Networking

Node OS CentOS 6

Data Configuration

Item Count 150 Million

Data Shape YCSB Default
~1K JSON documents with 10 fields with 100 bytes per field.

Memory to Data Size Ratio Target of ~%50 of Data In RAM with %100 of Data on Storage

6

YCSB Code
There are a number of YCSB repositories publicly available on github. The code used in measurements is critical to the validity of the
results and It is important to check the repository used with each measurement when validating results. Many of the published YCSB-
branded benchmarks utilize modified repositories that change the underlying code used for measurements. For this measurement, we
have used an updated Couchbase driver which has been submitted to the main fork as a pull request (PR #).

YCSB Configuration

Repo
https://github.com/brianfrankcooper/YCSB
Most popular YCSB repo as of June 2016. Github “Stars” >1200
“Forks” >800

MongoDB YCSB Driver

mongodb
https://github.com/brianfrankcooper/YCSB/tree/master/mon-
godb

Couchbase YCSB Driver

couchbase2
https://github.com/brianfrankcooper/YCSB/tree/master/
couch-base2 pull request PR# or https://github.com/
ingenthr/YCSB (n1ql-raw branch)
Settings:

couchbase.epoll=true
couchbase.boost=16
couchbase.upsert=true

7

Workloads
As stated above, for this benchmark we have stayed loyal to the definition of YCSB workloads and picked two representative workloads to
measure: Workload A and Workload E.

• Workload A defines a workload that simulates the capture of recent user actions with 50% reads and 50% updates.
• Workload E defines a workload that simulates threaded conversations in social networks with 95% queries looking for a range of

items and 5% inserts.

You can find the full definitions of the workloads here: https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads
We set the record count to 150 million and the operation count to 150 million and ran each iteration for at least 20 minutes.

Reporting Aggregate Results
For reporting accurate results that minimized the impact of the noisy-neighbor problem of public infrastructures like AWS, we have run all
tests measurements 3 times.
When reporting throughput numbers we have averaged all 3 measurements per test.
• For both workload A and E, throughput (ops/sec) is calculated as an average of the 3 runs.

When reporting latency, we have again averaged the latency across 3 measurements and calculated operation latency for the workload
using the distribution of the operations.
• For workload A, with a 50% read and 50% update distribution, read and update latency is calculated as an average of the 3 runs for

each operation using the 95th percentile measurement for Update and Read. Operation latency is calculated as an average of read
and update latency as the distribution is 50%/50%.

• For workload E with 95% scan (query) and 5% insert distribution, query and insert latency is calculated as an average of the 3 runs
for each operation using the 95th percentile. Operation latency is calculated as a weighted average of the 0.95*scan latency and
0.05*insert latency, aligning with the 95% scan/5% insert distribution ratio.

8

Couchbase Server Configuration

Couchbase Server 4.5 was used for the tests. (version 4.5.0.2601). The configuration we used is below.

* Memory allocated to data vs index has a fine grain control in Couchbase Server 4.5. 18GB for bucket RAM is applied to keep memory-
resident ratio at %50 for data. Index RAM is only used when global secondary indexes are present in the system. Workload A does not
use Index Service. Only Workload E needs global secondary indexes.

ductions systems with heavy mutation load, it is recommen** In pro ded to dial down the aggressiveness of the background compaction.

- For both workload A and E, throughput (ops/sec) is calculated as an average of the 3

runs.

When reporting latency, we have again averaged the latency across 3 measurements and

calculated operation latency for the workload using the distribution of the operations.

- For workload A, with a 50% read and 50% update distribution, read and update latency

is calculated as an average of the 3 runs for each operation using the 95th percentile

measurement for Update and Read. Operation latency is calculated as an average of

read and update latency as the distribution is 50%/50%.

- For workload E with 95% scan (query) and 5% insert distribution, query and insert

latency is calculated as an average of the 3 runs for each operation using the 95th

percentile. Operation latency is calculated as a weighted average of the 0.95*scan

latency and 0.05*insert latency, aligning with the 95% scan/5% insert distribution ratio.

Couchbase Server Configuration

Couchbase Server 4.5 was used for the tests. (version 4.5.0.2601). The configuration we used

is below.

Couchbase Server Configuration

Data RAM Quota 18GB

Bucket RAM Quota 18GB

Index RAM Quota * 34GB

Services Configured on each node Data, index, query

storageMode memory_optimized

 indexer.settings.maxVbQueueLength 5000

indexer.settings.max_cpu_percent 400

indexer.settings.wal_size 40960

replicas 1

compaction_number_of_kv_workers ** 1

compaction trigger on % fragmentation ** %75

* Memory allocated to data vs index has a fine grain control in Couchbase Server 4.5. 18GB for
bucket RAM is applied to keep memory-resident ratio at %30 for data. Index RAM is only used
when global secondary indexes are present in the system. Workload A does not use Index
Service. Only Workload E needs global secondary indexes.
** In productions systems with heavy mutation load, it is recommended to dial down the
aggressiveness of the background compaction.

9

MongoDB Configuration

MongoDB 3.2 was used for the tests. We used the community version for this benchmark, but there are no advertised performance
differences between the community version and the enterprise version. The following configuration parameters were used for the
benchmark.

* Memory allocated is lowered in workload A to maintain memory-resident ratio at %50 for data. With Workload E indexes take up
additional space so memory setting is kept higher to allow caching indexes.

MongoDB Configuration

MongoDB 3.2 was used for the tests. We used the community version for this benchmark, but

there are no advertised performance differences between the community version and the

enterprise version. The following configuration parameters were used for the benchmark.

MongoDB Server Configuration

Storage Engine Wired Tiger

mongos On each YCSB client node

Memory * 52GB per instance for workload E

18GB per instance for workload A

Read Preference nearest

Replicas 1

* Memory allocated is lowered in workload A to maintain memory-resident ratio at %30 for data.

With Workload E indexes take up additional space so memory setting is kept higher to allow

caching indexes.

Results

YCSB Workload E

Workload E measures query capabilities in both products. Workload E defines a workload that

simulates threaded conversations in social networks with %95 queries looking for a range of

items and %5 inserts.

We ran 7 different client loads for YCSB Workload E, increasing both the number of client nodes

and the total thread count at each increment.

Throughput Comparison

As illustrated in the graph below, Couchbase Server 4.5 was able to scale to handle the

increasing load at each step. MongoDB’s throughput capacity remained relatively flat. It’s

important to note how each database demonstrated increased latency across the load steps,

however latency for Couchbase increased roughly 57% where latency for MongoDB increased

589%.

10

Results

YCSB Workload E
Workload E measures query capabilities in both products. Workload E defines a workload that simulates threaded conversations in social
networks with %95 queries looking for a range of items and %5 inserts.

We ran 7 different client loads for YCSB Workload E, increasing both the number of client nodes and the total thread count at each
increment.

Throughput Comparison
As illustrated in the graph below, Couchbase Server 4.5 was able to scale to handle the increasing load at each step. MongoDB’s
throughput capacity remained relatively flat. It’s important to note how each database demonstrated increased latency across the load
steps, however latency for Couchbase increased roughly 57% where latency for MongoDB increased 589%.

Couchbase Server MongoDB

294 client threads 30,911 Ops / Sec 8,246 Ops / Sec

0	

10,000	

20,000	

30,000	

40,000	

2�42	 4�84	 6�126	 8�168	 10�210	 12�252	 14�294	

Op
er
at
io
ns
	p
er
	se
co
nd
	

Client	Nodes	/	Total	Client	Threads	

YCSB	Workload	E	 	Throughput	
higher	is	better	

Couchbase	Server	4.5	 MongoDB	3.2	

11

Latency Comparison
The graph below shows the change in latency for Workload E across the YCSB load scale. The latency is a weighted average of average
scan time and average insert time, measured as:

Latency for Couchbase Server increased somewhat modestly across the increasing load, where latency for MongoDB, increased much
more quickly despite having a lower initial value than Couchbase Server.

Couchbase Server MongoDB

294 client threads 16.9ms 34.36ms

0.00	

10.00	

20.00	

30.00	

40.00	

2�42	 4�84	 6�126	 8�168	 10�210	 12�252	 14�294	

�a
te
nc
�	
in
	�
s	

Client	Nodes	/	Total	Client	Threads	

YCSB	Workload	E	 	�atenc�	
lo�er	is	better	

Couchbase	Server	4.5	 MongoDB	3.2	

12

YCSB Workload A
YCSB Workload A was included to demonstrate performance for a typical key-value scenario. It presents a load balanced 50/50 between
read and update. We ran 4 combinations of nodes and threads for each database using YCSB Workload A, varying from 2 nodes with 70
total client threads up to 8 nodes with 280 total threads.

Throughput Comparison
For YCSB Workload A, Couchbase Server was able to scale somewhat linearly with the increasing client load. Couchbase throughput
increased 264% compared to MongoDB’s 186% increase.

Couchbase Server MongoDB

280 client threads 454,652 Ops / Sec 75,367 Ops / Sec

0	

100,000	

200,000	

300,000	

400,000	

500,000	

1�35	 2�70	 3�105	 4�140	 5�175	 6�210	 7�245	 8�280	

Op
er
at
io
ns
	p
er
	se
co
nd

	

Client	Nodes	/	Total	Thread	Co�nt	

YCSB	Workload	A	 	Throughput	
higher	is	better	

Couchbase	Server	4.5	 MongoDB	3.2	

13

Latency Comparison
The graph below shows the change in latency for Workload A across the YCSB load scale. The latency is a weighted average of average
scan time and average update time, measured as:

Latency for Couchbase Server increased somewhat modestly across the increasing load showing a 20% increase. Across the same load
scale, MongoDB’s latency increased 116%.

Couchbase Server MongoDB

280 client threads 1.02ms 5.68ms

0.00	
1.00	
2.00	
3.00	
4.00	
5.00	
6.00	

1�35	 2�70	 3�105	 4�140	 5�175	 6�210	 7�245	 8�280	

�a
te
nc
�	
��
s�

	

Client	Nodes	/	Total	Thread	Co�nt	

YCSB	Workload	A	 	�atenc�	
lo�er	is	better	

Couchbase	Server	4.5	 MongoDB	3.2	

14

Conclusion

We attempted to simulate as realistic workloads as possible via the YCSB benchmark suite. We included benchmarks using 2 of the YCSB
workloads: Workload A, intended to simulate a standard read/write application profile; and Workload E, intended to simulate a system
that is query-intensive (a 95% query /5% insert split). Between these two workload types, we believe that the most common NoSQL
usage profiles are covered.

Based on our benchmark results, Couchbase Server 4.5 shows better overall performance for both throughput and latency in both YCSB
A and E Workloads. In fact, Couchbase Server appeared to have much more capacity for handling load within a 5ms latency cap for
Workload A. For Workload E, with its more intensive query load, Couchbase Server 4.5 also clearly outperformed MongoDB 3.2.

15

Appendix

Result Data
Appendix

Result Data

MongoDB Workload A (Key-Value)

YCSB

Nodes/Threads

(35 threads/client)

Run #1

Throughput/Latency

(95th)

Run #2

Throughput/Latency

(95th)

Run #3

Throughput/Latency

(95th)

1/35 22,101 ops/sec

Update: 1.41ms

Read: 1.01ms

21,192 ops/sec

Update: 1.49ms

Read: 1.02ms

22,127 ops/sec

Update: 1.40ms

Read: 1.01ms

2/70 35,002 ops/sec

Update: 2.21ms

Read: 1.84ms

34,427 ops/sec

Update: 2.32ms

Read: 1.89ms

35,143 ops/sec

Update: 2.19ms

Read: 1.85ms

3/105 57,096 ops/sec

Update: 2.35ms

Read: 1.99ms

58,002 ops/sec

Update: 3.29ms

Read: 1.87ms

59,103 ops/sec

Update: 3.14ms

Read: 1.81ms

4/140 62,953 ops/sec

Update: 3.12ms

Read: 2.16ms

63,101 ops/sec

Update: 3.09ms

Read: 2.11ms

61,311 ops/sec

Update: 3.19ms

Read: 2.19ms

5/175 65,021 ops/sec

Update: 3.69ms

Read: 3.99ms

65,691 ops/sec

Update: 3.65ms

Read: 3.91ms

64,802 ops/sec

Update: 3.71ms

Read: 3.99ms

6/210 69,003 ops/sec

Update: 4.91ms

Read: 4.01ms

68,892 ops/sec

Update: 4.92ms

Read: 4.04ms

69,113 ops/sec

Update: 4.90ms

Read: 4.00ms

7/245 72,911 ops/sec

Update: 5.55ms

Read: 4.41ms

71,998 ops/sec

Update: 5.61ms

Read: 4.52ms

72,346 ops/sec

Update: 5.59ms

Read: 4.47ms

8/280 75,101 ops/sec

Update: 6.31ms

Read: 5.01ms

75,002 ops/sec

Update: 6.39ms

Read: 5.12ms

75,997 ops/sec

Update: 6.26ms

Read: 5.00ms

16

Couchbase Workload A (Key-Value)

YCSB

Nodes/Threads

(35 threads/client)

Run #1

Throughput/Latency

(95th)

Run #2

Throughput/Latency

(95th)

Run #3

Throughput/Latency

(95th)

1/35 81,163 ops/sec

Read : 0.634ms

Update : 0.673ms

81,132 ops/sec

Read : 0.637ms

Update : 0.675ms

81,038 ops/sec

Read : 0.637ms

Update : 0.677ms

2/70 160,443 ops/sec

Read : 0.66ms

Update : 0.711ms

160,989 ops/sec

Read : 0.658ms

Update : 0.705ms

160,291 ops/sec

Read : 0.655ms

Update : 0.706ms

3/105 226,652 ops/sec

Read : 0.728ms

Update : 0.787ms

225,248 ops/sec

Read : 0.729ms

Update : 0.786ms

225,598 ops/sec

Read : 0.727ms

Update : 0.785ms

4/140 295,533 ops/sec

Read : 0.756ms

Update : 0.824ms

295,473 ops/sec

Read : 0.755ms

Update : 0.822ms

296,257 ops/sec

Read : 0.749ms

Update : 0.818ms

5/175 352,985 ops/sec

Read : 0.796ms

Update : 0.871ms

352,448 ops/sec

Read : 0.804ms

Update : 0.88ms

349,661 ops/sec

Read : 0.809ms

Update : 0.885ms

6/210 398,770 ops/sec

Read : 0.855ms

Update : 0.931ms

395,697 ops/sec

Read : 0.837ms

Update : 0.915ms

397,353 ops/sec

Read : 0.863ms

Update : 0.939ms

7/245 442,551 ops/sec

Read : 0.893ms

Update : 0.97ms

438,194 ops/sec

Read : 0.906ms

Update : 0.983ms

439,526 ops/sec

Read : 0.9ms

Update : 0.977ms

8/280 436,328 ops/sec

Read : 1.145ms

Update : 0.969ms

456,227 ops/sec

Read : 1.02ms

Update : 1.001ms

471,400 ops/sec

Read : 0.962ms

Update : 1.009ms

17

MongoDB Workload E (Query)

YCSB

Nodes/Threads

(21 threads/client)

Run #1

Throughput/Latency

(95th)

Run #2

Throughput/Latency

(95th)

Run #3

Throughput/Latency

(95th)

2/42 7,501 ops/sec

Scan: 5.02ms

Insert: 3.01ms

7,421 ops/sec

Scan: 5.09ms

Insert: 3.04ms

7,316 ops/sec

Scan: 5.14ms

Insert: 3.12ms

3/63 7,648 ops/sec

Scan: 7.94ms

Insert: 5.86ms

7,621 ops/sec

Scan: 7.99ms

Insert: 5.91ms

7,511 ops/sec

Scan: 8.05ms

Insert: 6.14ms

4/84 7,994 ops/sec

Scan: 9.02ms

Insert: 7.12ms

7,901 ops/sec

Scan: 9.11ms

Insert: 7.28ms

7,812 ops/sec

Scan: 9.29ms

Insert: 7.43ms

5/105 8,029 ops/sec

Scan: 13.21ms

Insert: 10.02ms

8,001 ops/sec

Scan: 13.29ms

Insert: 10.06ms

7,992 ops/sec

Scan: 13.35ms

Insert: 10.11ms

6/126 8,102 ops/sec

Scan: 15.83ms

Insert: 13.91ms

8,004 ops/sec

Scan: 15.92ms

Insert: 13.98ms

8,009 ops/sec

Scan: 15.94ms

Insert: 13.99ms

7/147 8,199 ops/sec

Scan: 18.03ms

Insert: 15.41ms

8,083 ops/sec

Scan: 18.22ms

Insert: 15.55ms

8,116 ops/sec

Scan: 18.18ms

Insert: 15.48ms

8/168 8,251 ops/sec

Scan: 22.01ms

Insert: 19.12ms

8,183 ops/sec

Scan: 22.39ms

Insert: 19.54ms

8,201 ops/sec

Scan: 22.32ms

Insert: 19.42ms

10/210 8,246 ops/sec

Scan: 24.35ms

Insert: 23.52ms

8,299 ops/sec

Scan: 24.27ms

Insert: 23.10ms

8,281 ops/sec

Scan: 24.31ms

Insert: 23.40ms

12/252 8,283 ops/sec

Scan: 28.01ms

Insert: 24.52ms

8,107 ops/sec

Scan: 31.23ms

Insert: 26.91ms

8,341 ops/sec

Scan: 27.98ms

Insert: 25.99ms

14/294 8,303 ops/sec

Scan: 31.72ms

Insert: 27.01ms

8,103 ops/sec

Scan: 36.94ms

Insert: 30.06ms

8,332 ops/sec

Scan: 35.26ms

Insert: 29.94ms

18

Couchbase Workload E (Query)

YCSB

Nodes/Threads

(21 threads/client)

Run #1

Throughput/Latency

(95th)

Run #2

Throughput/Latency

(95th)

Run #3

Throughput/Latency

(95th)

2/42 7,086 ops/sec

Insert : 1.817ms

Scan : 11.015ms

6,513 ops/sec

Insert : 2.185ms

Scan : 11.967ms

7,139 ops/sec

Insert : 1.783ms

Scan : 10.863ms

3/63 10,374 ops/sec

Insert : 1.931ms

Scan : 11.076ms

10,759 ops/sec

Insert : 1.807ms

Scan : 10.69ms

10,667 ops/sec

Insert : 1.824ms

Scan : 10.764ms

4/84 13,846 ops/sec

Insert : 1.893ms

Scan : 10.835ms

12,969 ops/sec

Insert : 2.213ms

Scan : 11.659ms

13,560 ops/sec

Insert : 2.08ms

Scan : 11.087ms

5/105 17,343 ops/sec

Insert : 1.864ms

Scan : 10.754ms

17,162 ops/sec

Insert : 1.923ms

Scan : 10.802ms

17,137 ops/sec

Insert : 1.939ms

Scan : 10.869ms

6/126 19,928 ops/sec

Insert : 2.032ms

Scan : 11.12ms

20,601 ops/sec

Insert : 1.968ms

Scan : 10.578ms

20,293 ops/sec

Insert : 1.937ms

Scan : 10.767ms

7/147 23,243 ops/sec

Insert : 1.961ms

Scan : 10.858ms

22,634 ops/sec

Insert : 2.01ms

Scan : 11.188ms

22,507 ops/sec

Insert : 2.104ms

Scan : 11.262ms

8/168 26,095 ops/sec

Insert : 2.013ms

Scan : 11.179ms

25,743 ops/sec

Insert : 2.137ms

Scan : 11.408ms

26,210 ops/sec

Insert : 2.011ms

Scan : 11.19ms

10/210 29,752 ops/sec

Insert : 2.159ms

Scan : 12.826ms

29,359 ops/sec

Insert : 2.284ms

Scan : 12.96ms

29,241 ops/sec

Insert : 2.233ms

Scan : 12.941ms

12/252 30,823 ops/sec

Insert : 2.928ms

Scan : 14.92ms

30,888 ops/sec

Insert : 2.922ms

Scan : 14.883ms

30,869 ops/sec

Insert : 2.898ms

Scan : 14.74ms

14/294 31,321 ops/sec

Insert : 3.884ms

Scan : 17.3ms

30,603 ops/sec

Insert : 4.042ms

Scan : 17.776ms

30,810 ops/sec

Insert : 3.909ms

Scan : 17.658ms

19

Cost Calculation

Instance Count 9

Instance Type c3.8xlarge

OS CentOS

Cost per hour per instance $1.68

Cost per day $40.32

Cost per month per

instance $1,229.76

Monthly cost for all

instances $11,067.84

Workload A Couchbase MongoDB

Max Throughput (ops/sec) 454,652 75,367

Monthly cost per op/sec $0.02 $0.15

Workload E Couchbase MongoDB

Max Throughput (ops/sec) 30,911 8,246

Operations/sec $s per

month $0.36 $1.34

Full disclosure details

The configuration and scripts to reproduce this benchmark are available on github at

https://github.com/Avalon-Consulting-LLC/couchbase_45_mongodb_32_benchmark.

Full disclosure details

The configuration and scripts to reproduce this benchmark are available on github at
https://github.com/Avalon-Consulting-LLC/couchbase_45_mongodb_32_benchmark.

