
NoSQL Database Evaluation Guide
How Leading NoSQL Databases Compare Across the Eight Core Requirements



2

Introduction

Digital Economy

The business world is undergoing massive change as industry after industry shifts to the Digital 
Economy. It’s an economy powered by the Internet and other 21st-century technologies — the 
cloud, mobile, social media, and big data. At the heart of every Digital Economy business are its 
web, mobile, and Internet of Things (IoT) applications: they’re the primary way companies interact 
with customers today, and how companies run more and more of their business. The experiences 
that companies deliver via those apps largely determine how satisfied — and how loyal — 
customers will be. 

Building and running these web, mobile, and IoT applications has created a new set of technology 
requirements. Enterprise architecture needs to be far more agile than ever before, and requires 
an approach to real-time data management that can accommodate unprecedented levels of scale, 
speed, and data flexibility. Relational databases are unable to meet these new requirements, and 
enterprises are therefore turning to NoSQL database technology.

Three Phases of NoSQL Evolution and Adoption: From Grassroots to Mainstream

Enterprise adoption of NoSQL has unfolded in three overlapping phases. In phase I (which 
started around 2010), developers required flexibility to support the agile development of proof 
of concepts and small applications. In phase II (which began around 2013), enterprises required 
performance, scalability, and availability to develop and/or migrate targeted mission-critical 
services. In phase III (which is just starting in late 2015), both developers and enterprises require a 
general-purpose database that combines flexibility, performance, scalability, and availability with 
a comprehensive query language and powerful indexing to replatform all mission-critical applica-
tions and services for the Digital Economy.

About this Evaluation Guide

This guide defines and details the eight core requirements for an effective NoSQL database. Based 
on those requirements, the guide articulates how databases do or do not meet those require-
ments, and points out what to look for and what to avoid. It begins with Data Access because the 
key requirement for Phase III applications in the Digital Economy is the ability to query data with 
an expressive language that enables developers to query any type of data independent of how it is 
modeled.

Criteria

TABLE OF CONTENTS

Introduction

Overview

Data Access

Performance

Scalability

Availability

Geographic 

Distribution

Big Data Integration

Administration

Mobile

Conclusion

Checklist

2

3

5

6

7

8

9

10

11

12

12

13

 n Data Access

 n Performance

 n Scalability

 n Availability

 n Multiple Data Centers

 n Big Data Integration

 n Administration

 n Mobile



3

The Eight Core Requirements for an Effective NoSQL Database:

High-Level Overview

While every company has its own specific set of requirements for the NoSQL database technology 
that best fits its use case(s), there’s a core set of requirements that figure into most evaluations. 
Those requirements fall into eight categories, as defined below. This section provides a high-level 
overview of those eight core requirements. Later sections of the guide delve more deeply into 
each core requirement, followed by a comparison of leading NoSQL databases against the full set 
of requirements. 

Data Access

An effective NoSQL database must support the agile development of interactive applications 
with a flexible data model and a comprehensive query language, separating how data is modeled 
from how it is accessed. These capabilities enable architects and developers to create and modify 
the data model independent of how the data is queried. The query language must be capable of 
expressing complex queries on nested and/or referenced data with the ability to NEST, UNNEST, 
and JOIN related data. Ideally, the query language extends SQL, the most powerful, proven, and 
well understood of all query languages. In addition, the database should support geospatial and 
full-text search, and data processing with MapReduce.

Performance

An effective NoSQL database must meet the user experience requirements of highly interactive 
applications and the SLAs of mission-critical services with consistent, high performance; efficient 
use of memory and persistent storage; asynchronous operations; concurrent reads and writes; 
and topology-aware clients. To be specific, it must be able to provide low latency read and write 
operations at high throughput. Performance is not only important to the user experience; it also 
has a direct impact on cost and complexity: higher-performance databases require less hardware 
and fewer nodes.

Scalability

In order to support interactive applications with large numbers of users, large amounts of data, or 
both — whether from the beginning or as the result of exponential growth — an effective NoSQL 
database must provide simple, efficient, and reliable scaling on demand and without delay. It 
should require little to no effort to add a single node or many, since the process and effort should 
not change as the database scales. And it should be possible to scale individual database services 
(querying, indexing, and storage) separately, in addition to scaling the database as a whole. 

Availability

To ensure application and/or service uptime, an effective NoSQL database must maintain avail-
ability by providing a resilient architecture (i.e., no shared resources, no single point of failure) 
that leverages networking, topology, smart clients, and replication to survive unplanned outages 
and failures, regardless of scope. In addition, online operations such as backing up and restoring 
data, and upgrading the database, should be able to be performed while the database remains 
online without requiring any downtime. Finally, the database must be capable of leveraging multi-
ple data centers in such a way that all operations can be immediately rerouted to a different data 
center without a noticeable delay.



4

Geographic Distribution

An effective NoSQL database must be able to leverage multiple data centers for high availability, 
fast disaster recovery, and high performance with local reads and writes. The ability to read and 
write any data to any data center on demand is critical to availability and performance. It not 
only enables applications to continue functioning should a data center fail, but it enables them to 
take advantage of a local database for faster reads and writes. In addition, the database must be 
flexible enough to support global operations with custom topologies that utilize unidirectional 
replication between some data centers and bidirectional replication between others.

Big Data Integration

An effective NoSQL database is the foundation of any real-time big data architecture. It must be 
capable of functioning as both a source and a destination of data by integrating not only with 
Hadoop for long-term storage and offline processing, but also with Spark, Storm, Kafka, Elastic-
search, Solr, and more to enable stream processing, high throughput messaging, distributed full-
text search, and more. While it is important to support batch integration with Hadoop, the new 
requirement is streaming integration with platforms like Spark and Storm to enable low-latency 
analytics and iterative machine learning by (a) continuously streaming operational data to them 
and (b) storing their results so they can be accessed via web and mobile applications.

Administration

An effective NoSQL database must provide administrators with comprehensive management and 
monitoring capabilities via a powerful, full-featured administration console and API while at the same 
time automating the processes including, but not limited to, the distribution and replication of data. 
However, administrators must have the option to perform critical operations on demand with the push 
of a button, and without having to take the database offline — including rebalancing data when nodes 
are added to the cluster. In addition, administrators should be able to perform both cumulative and 
incremental backups and restores on demand, online, and regardless of node failures.

Mobile

An effective NoSQL database must provide mobile database capabilities, including fast and con-
sistent access to data, with or without a network connection. With an embedded local database 
and built-in multi-master synchronization, the mobile database must allow all devices to continue 
to operate while disconnected from the global network. An effective mobile NoSQL solution must 
also provide security for data at rest, data in motion and data in the cloud.



5

The Eight Core Requirements for an Effective NoSQL Database:

Detailed Breakdown

The following section explains in greater detail each of the eight core requirements for an effec-
tive NoSQL database. Each subsection concludes with an at-a-glance checklist of “What to look 
for” and “What to avoid.” 

Data Access

An effective NoSQL database must enaable developers to access data in different ways depending 
on application requirements and the data, and must have a full-featured query language based 
on the database industry standard, SQL. In addition, the database must provide clients in many 
languages from Java to Go and for mobile platforms, too.

SQL

SQL is the proven, de facto industry standard database query language, familiar to all developers. 
An effective NoSQL database must provide a full-featured query language based on SQL, which 
is both expressive and powerful. It enables applications to sort, filter, transform, aggregate, and 
combine data with a single query and little to no code. By contrast, databases with proprietary 
APIs or partial query languages lack features such as sorting, aggregation, and joins. These lim-
itations require the application to work with inefficient, possibly ineffective “table per query” or 
“single table” data models.

MapReduce

An effective NoSQL database must provide incremental MapReduce, which enables applications 
to index, sort, filter, and aggregate data, and to do so faster. With incremental MapReduce, the 
first time a MapReduce function is performed, it processes the existing data and generates results. 
Then, when new data is added, the database automatically processes the new data and merges 
the new results with the previous results. By contrast, databases that can’t perform MapReduce in 
increments must process the entire data set every time, slowing down as the size of the data set 
grows.

Geospatial

An effective NoSQL database must provide geospatial indexes, which enable applications to 
search not only based on location but on any dimension or multiple dimensions, and to search on 
location and multiple dimensions together (e.g., location + hours). In addition, a NoSQL database 
should support standards like GeoJSON, and be flexible enough to support arbitrary coordinates 
and numbers. By contrast, a database that’s limited to just two-dimensional geospatial search can 
only search based on location. For example, it can find “all restaurants in a city,” but it can’t find 
“all restaurants in a city that are open after midnight.”

Full-Text Search

An effective NoSQL database should include native full-text search and it should support integra-
tion with leading full-text search products like Elasticsearch and LucidWorks/Solr. Without such 
integration support, companies that already have these products installed won’t be able to easily 
leverage them.

WHAT TO LOOK FOR

WHAT TO AVOID

SQL-Based Query 
Language with JOINS

Aggregation

Incremental MapReduce

GeoJSON

Multi-Dimensional 
Geospatial Indexes

Native Full-Text Search

Elasticsearch and Solr 
Integration Support

Proprietary Query 
Language

Inability to JOIN Data

Batch MapReduce

Two-Dimensional 
Geospatial Indexes

Unsupported 
Elasticsearch and Solr 
Integration



6

Performance

In order to meet high-throughput, low-latency requirements for reads and writes, an effective, 
high-performance NoSQL database must leverage memory, concurrency, and networking.

Caching

A database’s caching architecture has a significant impact on performance. A database with a 
managed object cache and write-through caching delivers high performance by storing recent 
data in memory and by caching the data of individual reads and writes. By contrast, a database 
with a “block cache” is less efficient: it stores blocks of file data, and blocks may contain the data 
of multiple writes — i.e., writes that are not intended to be cached because their data is not being 
read. In addition, a database with “read-through caching” requires disk reads, because it does not 
cache data until it is read. 

Locking

An effective NoSQL database should provide fine-grained locking, which can perform many reads 
and writes at the same time. Each write requires a lock; fine-grained locking capability provides many 
locks. By contrast, a database with “coarse-grained locking” limits the number of locks and therefore 
is limited to performing just a few writes at a time. 

Clients

An effective NoSQL database should provide topology-aware clients, which ensure that all read 
and write requests require a single hop — from the client to the node. By contrast, if the database 
does not have topology-aware clients, read and write requests will require multiple hops — from 
the client, to the router/coordinator, to the node.

Writes

In order to perform writes without sacrificing consistency or performance, an effective NoSQL da-
tabase should enable every node to contain primary and replica data, which utilizes every node. 
By contrast, databases where nodes contain either primary or replica data (not both) do not effi-
ciently use every node; and databases that rely on quorums to maintain consistency require mul-
tiple nodes to perform a write. Both of those approaches negatively impact write performance.

Replication

An effective NoSQL database should provide memory-to-memory replication, which does not 
have to wait for data to be written to disk before replicating it. This architecture not only im-
proves write performance, but it improves durability when replication is synchronous. An effective 
NoSQL database also enables bidirectional geo-replication, which can replicate data between 
multiple data centers to improve read and write performance and provide full data locality — ap-
plications can read and write any and all data to their data center.

WHAT TO LOOK FOR

WHAT TO AVOID

Managed
Object Cache

Write-Through
Caching

Fine-Grained
Locking 

Topology-Aware
Clients

Primaries with 
Replica Data

Memory-to-Memory 
Replication 

Bidirectional 
Geo-Replication

Block Cache

Read-Through
Caching

Coarse-Grained
Locking

Routers/Coordinators

Disk-to-Disk
Replication

Unidirectional-Only 
Geo-Replication 

Primaries without 
Replica Data

Quorums



7

Scalability

An effective NoSQL database must be highly scalable: Not only should it be able to increase 
capacity (data or throughput) or availability by adding nodes, but it should also be able to do so 
easily, on demand, and efficiently, by demonstrating linear scaling — i.e., when a node is added, its 
full capacity is added.

Nodes

An effective NoSQL database should be based on a single node type and a flat topology, which 
makes scaling easier, faster, and more efficient, because scaling is performed by adding one or 
more nodes on demand. In addition, it must be able to be deployed on commodity hardware or 
cloud infrastructure rather than expensive mainframes or appliances. By contrast, a database with 
multiple node types (e.g., primary/secondary/router) and a hierarchical topology is more complex 
and more difficult to manage: the process requires configuring a group of nodes and adding that 
group to the cluster. In addition, it may require moving nodes to different servers.

Services

An effective NoSQL database should provide elastic services for data storage, indexing, and query-
ing, which can improve performance and resource utilization by running different services on differ-
ent commodity hardware — for example, a fast processor is not required for every node, only those 
running the query service — and also make scaling faster and more efficient. For example, elastic 
services make it possible to scale the indexing and querying services to accommodate new features 
and more users without scaling the data storage service. As a result, it’s not necessary to rebalance 
the data, or shift it around — a process that can impact overall performance until it is complete.

Queries

An effective NoSQL database should provide centralized querying, because it scales more effi-
ciently and does not require every node to participate in performing queries. The data may be 
stored on many nodes for scalability and performance, while the query is performed on a single 
node. It then requests data only from nodes that contain part of the results. By contrast, a data-
base that relies on distributed queries, or “scatter/gather” queries, performs the same query on 
every single node, which can slow down queries.

Clients

An effective NoSQL database should provide topology-aware clients, which allows the database to 
support a greater number of clients and applications, because more can be added without chang-
ing client configuration or scaling the database. By contrast, a database that relies on routers can 
run into issues when every application instance requires a local router and the number of routers 
overwhelms the database. If the routers are separated from the application instances, perfor-
mance drops.

WHAT TO LOOK FOR

WHAT TO AVOID

Single Node Type

Flat Topology

Topology-Aware Clients 

Elastic Services

Centralized Querying

Heterogeneous 
Hardware Supported

Multiple Node Types

Hierarchical Topology

Routers 

Lack of Elastic Services

Scatter/Gather Queries

Homogenous Hardware 
Required



8

Availability

To deliver high availability, an effective NoSQL database should implement a shared-nothing ar-
chitecture with replication, rack awareness, replication across multiple data centers, and no single 
point of failure.

Architecture

An effective NoSQL database should be designed with a shared-nothing architecture and no 
single point of failure: with this architecture, there are no required nodes and no shared resourc-
es between nodes — the database can therefore tolerate the failure of any node or resource. By 
contrast, a database with required nodes (such as routers, proxies, or configuration servers) or 
with shared resources (storage, memory, or processors) can lose availability if any of them fail.

Replication

An effective NoSQL database should include automatic, configurable memory-to-memory 
replication, which ensures availability and consistency while maintaining write performance: the 
data is replicated to multiple nodes, and it is fast. If a node fails, the data remains available. By con-
trast, a database that requires disk IO for replication can only provide one or the other — availability 
and consistency, or write performance.

Consistency

An effective NoSQL database should be designed with primary owners, which ensures availability 
and consistency by routing reads and writes of the same data to the same node. While the data 
is replicated, only a single node needs to be available to perform writes. By contrast, a database 
that relies on quorums requires the majority of quorum members to be available. If not, the data 
becomes unavailable.

Geographic Distribution

An effective NoSQL database provides bidirectional, cross–data center replication (XDCR) be-
tween independent data centers, which ensures availability by enabling applications to read and 
write all data to any data center on demand and without a noticeable delay — all data centers can 
read and write all data. This capability not only improves availability, but it improves performance 
— all reads and writes are performed locally — and enables disaster recovery with the ability to 
recover data from a remote data center. By contrast, a database with only unidirectional replica-
tion must perform a failover first — resulting in a temporary loss of availability.

Clients

An effective NoSQL database should provide topology-aware clients, which ensures availability 
because clients are aware of node failures. If a node fails, clients will be made aware of it and can 
route reads and writes to a different node. By contrast, a database without topology-aware clients 
requires routers or proxies between clients and nodes. If a router or proxy fails, the database can 
become unavailable because the clients cannot reach it. In addition, an effective NoSQL solution 
should provide an embedded database for mobile platforms with built-in, automatic synchroniza-
tion that is always available, regardless of whether or not the remote database is available.

WHAT TO LOOK FOR

WHAT TO AVOID

Shared-Nothing 
Architecture

No Single Point 
of Failure

Memory-to-Memory 
Replication 

Rack Awareness

Primary Owners

Bidirectional, Cross–
Data Center Replication

Full Write Locality

Shared Resources

Required Nodes

Routers/Coordinators

Configuration Servers
 
Disk-to-Disk Replication

Quorums

Unidirectional-Only 
Cross–Data Center 
Replication

Limited Write Locality



9

Geographic Distribution

In order to deliver high availability, fast disaster recovery, and high performance, an effective 
NoSQL database must leverage cross–data center replication and multiple data centers.

Locality

An effective NoSQL database should provide bidirectional cross–data center replication, which 
enables applications to read and write all data to any data center not only for high availability and 
disaster recovery, but for performance — applications can perform local reads and writes. By con-
trast, a database with only unidirectional replication cannot always perform local writes, because 
either (a) only one data center performs writes, or (b) each data center can only perform writes for 
a subset of the data.

Topology

An effective NoSQL database, which provides bidirectional replication between independent 
clusters, has the flexibility required to support a variety of topologies: ring (sequence of one-to-
one), hub and spoke (one-to-many or many-to-one in parallel), mesh (many-to-many in parallel), 
and tiered or mixed combinations. By contrast, a database with bidirectional replication and a single 
cluster is limited to a mesh topology; and a database with unidirectional replication and a single 
cluster is limited to a hub and spoke topology.

Control

An effective NoSQL database should enable a dedicated cross–data center replication 
implementation, which not only provides advanced functionality, but is also easier to manage. 
Administrators can pause, resume, or cancel replication on demand; configure filtering to limit 
replication based on application, tenant, geography, and more; and use it to perform data 
recovery. By contrast, a database that relies on standard replication, without dedicated cross–
data center replication, provides limited functionality and is difficult to manage because it is not 
separate from intra-cluster replication.

Replication

In order to reduce replication latency and thus the window of inconsistent data, an effective 
NoSQL database should use memory-to-memory replication to avoid disk IO. By contrast, a 
database with disk-to-disk replication can suffer from large windows of inconsistent data, because 
it has to wait for data to be written to disk before replicating it.

WHAT TO LOOK FOR

WHAT TO AVOID

Bidirectional Replication

Independent Clusters

Memory-to-Memory 
Replication
 
Optimized Cross–Data 
Center Replication 

Filtered Replication

Pause/Resume

Data Recovery

Unidirectional 
Replication

Single Cluster

Standard Replication

Full Replication Only



10

Big Data Integration

An effective NoSQL database must support integration with big data, analytics, and reporting 
infrastructure with both batch and streaming data flows.

Hadoop

In order to import data from and export data to Hadoop, an effective NoSQL database should 
provide a certified Sqoop plugin. By exporting data to Hadoop, data can be processed by multiple 
MapReduce or Spark jobs — i.e., the data is in Hadoop. By contrast, a database that relies on a 
MapReduce input source forces Hadoop to ingest all of the data every time a job is run — i.e., the 
data remains in the database.

Spark

An effective NoSQL database should provide complete Spark integration, enabling the database to 
be used as a source of data for Spark, Spark Streaming, and Spark SQL, in addition to being used to 
persist the results. By contrast, a database that’s limited to Spark and Spark SQL integration can be 
used as an input and/or output source for offline analytics, but it can’t be used as an input for Spark 
Streaming for real-time analytics.

Kafka

An effective NoSQL database should provide complete Kafka integration, which enables the 
database to be used as a producer (source of messages) and/or consumer (destination of messag-
es). When the database is used as a producer, data is published to a message queue as soon as it is 
written to the database. When the database is used as a consumer, data is written to the database 
as soon as it is published to the message queue.

ETL/BI/Reporting

An effective NoSQL database should come with standard, full-featured ODBC/JDBC drivers and 
a query language based on SQL that can be used with analytics and data integration tools without 
requiring a custom connector or adapter. By contrast, a database without ODBC/JDBC drivers, 
or with drivers that do not wrap a SQL-based language, provides limited functionality and perfor-
mance because it has to implement query logic within the driver.

WHAT TO LOOK FOR

WHAT TO AVOID

Certified Sqoop Plugin

Spark Input/Output

Spark SQL Input 

Spark Streaming Input

Kafka Consumer and 
Producer

ODBC/JDBC Drivers

SQL-Based Query 
Language

No Sqoop Plugin

No Spark SQL Input

No Spark 
Streaming Input 

No Kafka Integration

No Supported Full-Text 
Search Integration

No SQL-Based Query 
Language



11

Administration

An effective NoSQL database should give administrators access to a complete administrative 
console and API that provides them with all the tools necessary to easily manage and monitor 
deployments of any size and scale.

Management

An effective NoSQL database should provide a full-featured administration console and API 
giving administrators complete control of all database operations — including the ability to add 
or remove nodes, rebalance data, perform backups, restore data, failing over nodes, restore failed 
nodes, and more — all on demand. By contrast, databases with limited administration consoles 
require administrators to perform some tasks manually, either by editing configuration files or 
performing command line operations, or in some cases by performing tasks automatically without 
the option for administrative control.

Monitoring

A critical part of managing both small and large deployments is a full complement of statistics and 
data for monitoring. An effective NoSQL database must therefore give administrators access to hun-
dreds of metrics, both cluster-wide and node-specific. By contrast, a database with limited metrics 
may not provide administrators with information such as swap usage, CPU utilization, the number of 
connections, disk reads per second, the percent of data resident in memory, replication queue size, 
geo-replication status, and much more.

Backup/Restore

In order to efficiently restore the data of a cluster, an effective NoSQL database must enable 
administrators to perform cumulative and incremental backups and restores. This includes taking 
cumulative and incremental backups, as well as restoring data from cumulative or incremental 
backups. By contrast, a database that’s limited to snapshots forces administrators to restore all 
of the data, even if only a small percentage of it needs to be restored. In addition, administrators 
should be able to perform backups on demand, as well as restore data regardless of whether or 
not nodes have failed.

WHAT TO LOOK FOR

WHAT TO AVOID

Manual Rebalancing

On-Demand Backups

Operations via 
Admin Console

Cumulative and 
Incremental Backup 
and Restore

Configuration UI

200+ Metrics

Cluster-Wide Log 
Aggregation 

Online Restore

No Manual Rebalancing

No On-Demand Backups

Operations via 
Command Line

Scheduled Backups

Configuration Files

Limited Metrics

Per-Node Log Analysis

Snapshot Backup 
and Restore

Offline Restore



12

Mobile Database

An effective NoSQL database must provide mobile database capabilities, including fast and con-
sistent access to data, with or without a network connection.

Local Database

An effective mobile NoSQL solution must provide an embedded database that runs on the device 
and has a small footprint. The database must provide a flexible data model, perform fast queries 
against data, and publish change events that allow applications to listen/observe for data changes.

Synchronization

An effective mobile NoSQL solution must provide built-in multi-master synchronization that allows 
for secure synchronization between local and remote databases. It should support flexible deploy-
ment topologies — including Star, Tree, and Mesh — and allow different parts of the system (in 
addition to the devices) to operate while disconnected from the global network.

Security

An effective mobile NoSQL solution must provide security for customizable user authentication, 
fine-grained data read/write access, data transport over a secure channel, encrypted data storage 
on device, and encrypted data storage in the cloud.

Conclusion

The process of evaluating a NoSQL database begins with identifying its architecture and under-
standing its features, both the capabilities and the limitations. The architecture and features 
have to meet developer, enterprise, and application requirements. If they do, the next step is to 
perform a hands-on evaluation — install the database, build a proof of concept or migrate a simple 
application, and see how well it does or does not perform under load.

WHAT TO LOOK FOR

WHAT TO AVOID

Offline Data Access

Flexible Data Model

Fast Queries

Change Events 

Multi-Master 
Replication

Flexible Deployment 
Topology

Security

Managed 
Synchronization

Reliant on Network

Inflexible Data Model

Key/Value Only

Polling for Changes

Cache and Write Queues

Only Support for 
Star Topology

DIY Security

DIY Synchronization



13

Appendix A: NoSQL Database Evaluation Checklist

The following checklist evaluates Couchbase Server, MongoDB, and Cassandra (DataStax Enter-
prise). However, it can be used as a framework for evaluating other NoSQL databases as well.



14

Appendix A: NoSQL Database Evaluation Checklist (Continued)



15

Appendix A: NoSQL Database Evaluation Checklist (Continued)



16

Appendix A: NoSQL Database Evaluation Checklist (Continued)


