
Ad and offer targeting systems present a host of interactive software scaling challenges. Interactive software
(software with which a person iteratively interacts in real time) has changed in fundamental ways over the last
35 years. The “online” systems of the 1970s have, through a series of intermediate transformations, evolved
into today’s web and mobile applications. These systems solve new problems for potentially vastly larger user
populations, and they execute atop a computing infrastructure that has changed even more radically over the years.

The architecture of these software systems has likewise transformed. A modern web application can support
millions of concurrent users by spreading load across a collection of application servers behind a load balancer.
Changes in application behavior can be rolled out incrementally without requiring application downtime by
gradually replacing the software on individual servers. Adjustments to application capacity are easily made by
changing the number of application servers.

But database technology has not kept pace. Relational database technology, invented in the 1970s and still in
widespread use today, was optimized for the applications, users and infrastructure of that era. In some regards, it is
the last domino to fall in the inevitable march toward a fully distributed software architecture. While a number of
band aids have extended the useful life of the technology (horizontal and vertical sharding, distributed caching and
data denormalization), these tactics nullify key benefits of the relational model while increasing total system cost
and complexity.

In response to the lack of commercially available alternatives, organizations such as Google and Amazon were,
out of necessity, forced to invent new approaches to data management. These “NoSQL” or non-relational database
technologies are a better match for the needs of modern interactive software systems. But not every company can
or should develop, maintain and support its own database technology. Building upon the pioneering research at
these and other leading-edge organizations, commercial suppliers of NoSQL database technology have emerged to
offer database technology purpose-built to enable the cost-effective management of data behind modern web and
mobile applications.

NoSQL and
Ad Targeting

Using Couchbase to
build your ad platform

NoSQL and Ad Targeting 1

Ad and offer targeting using NoSQL database technology and Hadoop

Selecting an ad to display or an offer to present on a web page is a choice with direct revenue impact; and a choice
that must be made quickly to minimize page load times. To make a revenue-maximizing decision, targeting logic
must consider current behavioral, demographic and psychographic characteristics known, or inferred, about the
targeted ad or offer recipient; and it must weigh those against the current status of running campaigns, contract
commitments and goals.

AOL Advertising runs one of the largest online ad serving operations, serving billions of impressions each
month to hundreds of millions of people. AOL faced three data management challenges when building their ad
serving platform:

•	 How to analyze billions of user-related events, presented as a mix of structured and unstructured data, to
infer demographic, psychographic and behavioral characteristics that are encapsulated into hundreds of
millions of user profiles

•	 How to make hundreds of millions of user profiles available to their targeting platform with sub-millisecond
latency on random reads

•	 How to keep the user profiles fresh and current

The solution was to integrate two data management systems: one optimized for high-throughput data analysis
(the “analytics” system), the other for low-latency random access (the “transactional” system). After evaluating
alternatives, the final architecture paired Hadoop with Couchbase:

In this architecture, (1) click-stream data and other events are fed into Hadoop from a wide variety of sources (2)
the data is analyzed using Hadoop MapReduce to generate hundreds of millions of user profiles; then, based on
which ad campaigns are running, selected user profiles are loaded into Couchbase where (3) ad targeting logic can
query Couchbase with sub-millisecond latency to get the data needed to make optimized decisions about real-time
ad placement. The targeting system also writes to Couchbase after each decision is made – updating historical and
statistical information that helps shape subsequent targeting decisions.

2NoSQL and Ad Targeting

A number of intrinsic characteristics and capabilities of Couchbase make it a strong fit for the real-time data
management needs of modern ad and offer targeting systems:

•	 Production proven in large-scale ad and offer targeting systems. Couchbase has proven itself in large-scale
production ad and offer targeting deployments with organizations including Chango, ShareThis, Context
web, Delta Project’s AdAction, Ad Scale and AOL Advertising.

•	 Schema-free data model. No need to define (or redefine) a database schema before inserting data.
Targeting algorithms and approaches can change rapidly and often require changes in input data.

•	 Elastic scaling. Effortlessly scales out to hold billions of data items for hundreds of millions of users, on
commodity hardware or cloud computing instances.

•	 Consistent sub-millisecond random read and write latency. Consistently delivers sub-millisecond random
read and write latency across the entire data set, supporting not only optimized decision making but
enabling finely targeted personalization of ad and offer content in tight decision time windows.

•	 Hadoop integration. Available Sqoop and Flume connectors provide “off the shelf” bi-directional
connectivity between Hadoop and Couchbase.

•	 Built-in transparent caching. Stores data supporting active campaigns in main memory for deterministic
sub-millisecond latency, while automatically migrating data items not currently required to disk for lower-
cost storage.

Interactive software has changed

As Table 1 below shows, there are fundamental differences in the users, applications and underlying infrastructure
between interactive software systems of the 1970s and those being built today.

U
se

rs
In

fr
a

st
ru

ct
u

re

2,000 “online” users = End Point 2,000 “online” users = Starting Point

Static user population Dynamic user population

Data networking in its infancy Universal high-speed data networking

Memory scarce and expensive Memory plentiful and cheap

Centralized computing (Mainframes
and minicomputers)

Distributed computing (Network servers and
virtual machines)

Circa 1975
“Online Applications”

Circa 2011
“Interactive Web Applications”

Business process automation Business process innovation

Highly structured data records Structured, semi-structured and unstructured data

A
p

p
li
ca

ti
o

n
s

TABLE 1: Interactive software then and now

3NoSQL and Ad Targeting

Users

In 1975, an interactive software system with 2000 users represented the pinnacle of scale. Few organizations built,
deployed and supported such systems. American Airlines Sabre® System (first installed in a travel agency in 1976)
and Bank of America’s branch banking automation system represent two notable interactive software systems that
scaled to these heights. But these were exceptions.

Today, applications accessed via the public web have a potential user base of over 2 billion users. Whether an
online banking system; a social networking or gaming application; or an e-commerce application selling goods and
services to the public; there are innumerable examples of software systems that routinely support a population of
users many orders of magnitude beyond the largest of the 1970s. A system with only 2000 users is the exception
now, assuming the application is not an abject failure.

There is also user growth and churn today not seen in systems of the 1970s. Once rolled out, the number of travel
agents or tellers added to, or removed from, these systems was highly predictable and relatively easy to manage
(albeit somewhat manually and at measured pace). Users worked during well-defined office hours, providing
windows of opportunity for scheduled system downtime and maintenance.

Today, web applications can serve a global population of users 24 hours a day, 365 days per year. A newly launched
software system can grow from no users to over a million users almost literally overnight. Not all users are active
on these systems at any given time, and some users may use an application only a few times, never to return, and
without providing notice of their intent to leave.

Applications

In 1975, interactive software systems were primarily designed to automate what were previously tedious, paper-
based business processes – teller transactions, flight reservations, stock trades. These “transactions” typically
mirrored what clerical employees had been doing “by hand” for decades – filling in fields on a structured business
form; filing or sending forms to other employees who would tally them, update impacted ledgers and notate files to
effect “transactions.” Online transaction processing systems accelerated these tasks and reduced the probability of
error, but in most cases they were automating versus innovating.

Versus simply automating long-standing manual business processes, today’s web applications are breaking new
ground in every direction. They are changing the nature of communication, shopping, advertising, entertainment
and relationship management. But they are works in progress. There are no old business forms to simply mimic,
or processes to study and automate. It may be trite, but change is truly the only constant in these systems. And a
database has to be flexible enough to change with them.

Infrastructure

Perhaps the most obvious difference between periods is the infrastructure atop which these software systems
execute.

Centralization characterized the computing environment in the 1970s – mainframes and minicomputers with
shared CPU, memory and disk subsystems were the norm. Computer networking was in its infancy. Memory was
an expensive, scarce resource. Today, distributed computing is the norm. Within a datacenter, servers and virtual
machines are interconnected via high-speed data networks. Users of software systems access them from even more
widely distributed desktop, laptop and mobile computing devices.

The IBM System/360 Model 195 was “the most powerful computer in IBM’s product line” from August 1969
through the mid-1970s. The most powerful configuration of this system shipped with 4MB of main (core) memory.
Today, a single high-end microprocessor can have more L1 cache memory on the processor die itself, with support
for many orders of magnitude more main memory.

4NoSQL and Ad Targeting

Application architecture has changed

Directly addressing the aforementioned changes, and in contrast to the scale-up, centralized approach of circa 1975
interactive software architecture, modern web applications are built to scale out – simply add more commodity web
servers behind a load balancer to support more users. Scaling out is also a core tenet of the increasingly important
cloud computing model, in which virtual machine instances can be easily added or removed to match demand.

Web Application - Logic Scales Out. To support more users for a web application, you simply add more commodity web servers.
As a result, system cost expands linearly with linear increases in users, and performance remains constant. This model scales out
indefinitely for all practical purposes.

Web Servers

Users

S
y

st
e

m
 C

o
st

A
p

p
li

c
a

ti
o

n
 R

e
sp

o
n

se
 T

im
e

Load
Balancer

www.wellsfargo.com

Figure 1: Web Application – Logic Scales Out. To support more users for a web application, you simply add more commodity web servers. As a result,
system cost expands linearly with liner increase in users, and performance remains constant. This model scales indefinitely for all practical purposes.

The cost and performance curves are obviously attractive, but ultimately, flexibility is the big win in this approach.

As users come and go, commodity servers (or virtual machines) can be quickly added or removed from the server
pool, matching capital and operating costs to the difficult-to-predict size and activity level of the user population.
And by distributing the load across many servers, even across geographies, the system is inherently fault-tolerant,
supporting continuous operations.

As application needs change, new software can be gradually rolled out across subsets of the overall server pool.
Facebook, as an example, slowly dials up new functionality by rolling out new software to a subset of their entire
application server tier (and user population) in a stepwise manner. If issues crop up, servers can be quickly reverted
to the previous known good build. All this can be done without ever taking the application “offline.”

5NoSQL and Ad Targeting

Database architecture has not kept pace

In contrast to the sweeping changes in application architecture, relational database (RDBMS) technology, a “scale-
up” technology that has not fundamentally changed in over 40 years, continues to be the default choice for holding
data behind web applications. Not surprisingly, RDBMS technology reflects the realities (users, applications, and
infrastructure) of the environment that spawned it.

Because it is a technology designed for the centralized computing model, to handle more users one must get a
bigger server (increasing CPU, memory and IO capacity) (see Figure 2). Big servers tend to be highly complex,
proprietary, and disproportionately expensive pieces of engineered machinery, unlike the low-cost, commodity
hardware typically deployed in web- and cloud-based architectures. And, ultimately, there is a limit to how big a
server one can purchase, even given an unlimited willingness and ability to pay.

Figure 2: Web Application - RDBMS Scales Up. To support more users, you must get a bigger database server for your RDBMS.
As a result, system cost grows exponentially with linear increases in users, and application response time degrades asymptotically.

Relational
Database

RDBMS Software
installes on
comples,
expensive,
big iron.

Web Servers

Users

Won’t
scale

beyond
this

point

S
y

st
e

m
 C

o
st

A
p

p
li

c
a

ti
o

n
 R

e
sp

o
n

se
 T

im
e

Figure 2: Web Application – RDBMS Scales Up. To support more users, you must get a bigger database server for your RDBMS. As a result, system cost
grows exponentially with linear increases in users, and application response time degrades asymptotically.

While the scaling economics are certainly inferior to the model now employed at the application logic tier, it is once
again flexibility (or lack thereof) that is the “high-order bit” to consider.

Upgrading a server is an exercise that requires planning, acquisition and application downtime to complete. Given
the relatively unpredictable user growth rate of modern software systems, inevitably there is either over- or
under-provisioning of resources. Too much and you’ve overspent, too little and users can have a bad application
experience or the application can outright fail. And with all the eggs in a single basket, fault tolerance and high-
availability strategies are critically important to get right.

Perhaps the least obvious, but arguably the most damaging downside of using RDBMS technology behind modern
interactive software systems is the rigidity of the database schema. As noted previously, we are no longer simply
automating long-standing and well-understand paper-based processes, where database record formats are pre-
defined and largely static. But RDBMS technology requires the strict definition of a “schema” prior to storing any
data into the database. Changing the schema once data is inserted is A Big Deal. Want to start capturing new
information you didn’t previously consider? Want to make rapid changes to application behavior requiring changes
to data formats and content? With RDBMS technology, changes like these are extremely disruptive and therefore
are frequently avoided - the opposite behavior desired in a rapidly-evolving business and market environment.

6NoSQL and Ad Targeting

Tactics to extend the useful scope of RDBMS technology

In an effort to address the shortcomings of RDBMS technology when used behind modern interactive software
systems, developers have adopted a number of “band aid” tactics.

Sharding

The RDBMS data model and transaction mechanics fundamentally assume a centralized computing model – shared
CPU, memory and disk. If the data for an application will not fit on a single server or, more likely, if a single server is
incapable of maintaining the I/O throughput required to serve many users simultaneously, then a tactic known as
sharding is frequently employed. In this approach an application will implement some form of data partitioning to
manually spread data across servers. For example, users that live west of the Mississippi River may have their data
stored in one server, while those who live east of the river will be stored in another.

While this does work to spread the load, there are undesirable consequences to the approach.

•	 When you fill a shard, it is highly disruptive to re-shard. When you fill a shard, you have to change the
sharding strategy in the application itself. For example, if you had partitioned your database by placing all
accounts east of the Mississippi on one server and all accounts west in another and then reach the limits
of their capacity, you must change the sharding approach which means changing your application. Where
previously the application had to know “this is an east of the Mississippi customer and thus I need to look
in this database server,” now it must know “if it is east of the Mississippi and below the Mason-Dixon Line, I
need to look in that server now.”

•	 You lose some of the most important benefits of the relational model. You can’t do “joins” across shards
– if you want to find all customers that have purchased a pair of wool socks but that haven’t purchased
anything in over 6 months, you must run a query on every server and piece the results together in
application software. In addition, you can’t do cross-node locking when making updates. So one must
ensure all data that could need to be atomically operated on is resident on a single server, unless using an
external TP monitor system or complex logic in the application itself.

•	 You have to create and maintain a schema on every server. If you have new information you want to collect,
you must modify the database schema, on every server; then normalize, retune and rebuild the tables.
What was hard with one server is a nightmare across many. For this reason, the default behavior is to
minimize the collection of new information.

Denormalizing

Before storing data in an RDBMS, a schema must be created defining precisely what data can be stored in the
database and the relationships between data elements. Data is decomposed into a “normal form” and a record
is typically spread across many interlinked tables. In order to update a record, all these tables must be locked
down and updated atomically, lest the database could become corrupted. This approach substantially limits the
latency and throughput of concurrent updates and is, for most practical purposes, impossible to implement across
server boundaries.

To support concurrency and sharding, data is frequently stored in a de-normalized form when an RDBMS is
used behind web applications. This approach potentially duplicates data in the database, requiring updates to
multiple tables when a duplicated data item is changes, but it reduces the amount of locking required and thus
improves concurrency.

At the limit the relational schema is more or less abandoned entirely, with data simply stored in key-value
form, where a primary key is paired with a data “blob” that can hold any data. This approach allows the type
of information being stored in the database to change without requiring an update to the schema. It makes
sharding much easier and allows for rapid changes in the data model. Of course, just about all relational database
functionality is lost in the process (though if the database is sharded much of the functionality was already lost).

7NoSQL and Ad Targeting

Notwithstanding all these problems, many organizations are using relational technology in precisely this manner
given the familiarity of specific RDBMS technologies to developers and operations teams, and, until recently, the
lack of good alternatives.

Distributed caching

Another tactic used to extend the useful scope of RDBMS technology has been to employ distributed caching
technologies, such as memcached. Today, memcached is a key ingredient in the data architecture behind 18 of the
top 20 largest (by user count) web applications, including Google, Wikipedia, Twitter, YouTube, Facebook, Craigslist,
and tens of thousands of other corporate and consumer web applications. Most new web applications now build
memcached into their data architecture from day one.

Web Application - Logic Scales Out. To support more users for a web application, you simply add more commodity web
servers. As a result, system cost expands linearly with linear increases in users, and performance remains constant. This
model scales out indefinitely for all practical purposes.

Memcached Servers

Relational
Database

Web Servers

Figure 3: Memcached distributed caching technology extends the useful life of RDBMS technology behind interactive web applications, spreading data
across servers and leveraging the availability and performance of main memory

Memcached builds on two of the most important infrastructure transitions over the last 40 years: the shift to
distributed computing atop high-speed data networks, and advances in main memory (RAM) price/performance.

Memcached “sits in front” of an RDBMS system, caching recently accessed data in memory and storing that data
across any number of servers or virtual machines. When an application needs access to data, rather than going
directly to the RDBMS, it first checks memcached to see if the data is available there; if it is not, then the database
is read by the application and stored in memcached for quick access next time it is needed.

While useful and effective to a point, memcached and similar distributed caching technologies used for this
purpose are no panacea and can even create problems of their own:

•	 Accelerates only data reads. Memcached was designed to accelerate the reading of data by storing it in
main memory, but it was not designed to permanently store data. Memcached stores data in memory. If a
server is powered off or otherwise fails, or if memory is filled up, data is lost. For this reason, all data writes
must be done on the RDBMS. Because all data is written to the RDBMS, the application will simply read it
from the database if it is not present in the cache. While offloading database reads helps many applications,
there is still a write bottleneck that can be significant.

•	 Cold cache thrash. Many applications become so dependent on memcached performance that the loss
of even a single server in a memcached cluster can result in serious consequences for the users of an
application. As the application seeks but doesn’t find data in the caching tier, it is forced to read the data
from the RDBMS. With enough cache misses the RDBMS can be flooded with read requests. The result
can be a delay in both reads and writes of data which can lead to application time-outs, unacceptably slow
application response times and user dissatisfaction.

8NoSQL and Ad Targeting

•	 Another tier to manage. It should be obvious that inserting another tier of infrastructure into the
architecture to address some (but not all) of the failings of RDBMS technology in the modern interactive
software use case can create its own set of problems: more capital costs, more operational expense, more
points of failure, more complexity.

“NoSQL” database technologies

The techniques used to extend the useful scope of RDBMS technology fight symptoms but not the disease itself.
Sharding, denormalizing, distributed caching and other tactics all attempt to paper over one simple fact: RDBMS
technology is a forced fit for modern interactive software systems.

Because vendors of RDBMS technology have little incentive to disrupt a technology generating billions of dollars
for them annually, application developers were forced to take matters into their own hands. Google (Big Table) and
Amazon (Dynamo) are two leading web application developers who invented, developed and depend on their own
database technologies. These “NoSQL” databases, each eschewing the relational data model, are a far better match
for the needs modern interactive software systems.

Figure 4: In contrast to the non-linear increase in total system cost and asymptotic degradation of performance previously seen with
RDBMS technology, NoSQL database technology flattens both curves.

Web Servers

NoSQL
Database
Servers

Users

Application Scales Out
Just add more commodity web servers

S
y

st
e

m
 C

o
st

A
p

p
li

c
a

ti
o

n
 R

e
sp

o
n

se
 T

im
e

Users

S
y

st
e

m
 C

o
st

A
p

p
li

c
a

ti
o

n
 R

e
sp

o
n

se
 T

im
e

Database Scales Out
Just add more commodity web servers

Load
Balancer

www.wellsfargo.com

Figure 4: In contrast to the non-linear increase in total system cost and asymptotic degradation of performance previously seen with RDBMS
technology, NoSQL database technology flattens both curves.

9NoSQL and Ad Targeting
© 2013 Couchbase all rights reserved | www.couchbase.com

While implementations differ, NoSQL database management systems share a common set
of characteristics:

•	 No schema required. Data can be inserted in a NoSQL database without first defining a rigid database
schema. As a corollary, the format of the data being inserted can be changed at any time, without
application disruption. This provides immense application flexibility, which ultimately delivers substantial
business flexibility.

•	 Auto-sharding (sometimes called “elasticity”). A NoSQL database automatically spreads data across
servers, without requiring applications to participate. Servers can be added or removed from the data
layer without application downtime, with data (and I/O) automatically spread across the servers. Most
NoSQL databases also support data replication, storing multiple copies of data across the cluster, and even
across data centers, to ensure high-availability and support disaster recovery. A properly managed NoSQL
database system should never need to be taken offline, for any reason, supporting 24x7x365 continuous
operation of applications.

•	 Distributed query support. “Sharding” an RDBMS can reduce, or eliminate in certain cases, the ability to
perform complex data queries. NoSQL database systems retain their full query expressive power even
when distributed across hundreds or thousands of servers.

•	 Integrated caching. To reduce latency and increase sustained data throughput, advanced NoSQL database
technologies transparently cache data in system memory. This behavior is transparent to the application
developer and the operations team, in contrast to RDBMS technology where a caching tier is usually
a separate infrastructure tier that must be developed to, deployed on separate servers and explicitly
managed by the ops team.

Open source and commercial NoSQL database technologies

Unlike Google and Amazon, few companies can or should build and maintain their own database technology. But
the need for a new approach is nearly universal. The vast majority of new interactive software systems are web
applications with the characteristics and needs described in this document. These systems are being built by
organizations of all sizes and across all industries. Interactive software is fundamentally changing, and the database
technology used to support these systems is changing too.

A number of commercial and open source database technologies such as Couchbase, MongoDB, Cassandra, Riak
and others are now available and increasingly represent the “go to” data management technology behind new
interactive web applications.

About Couchbase

We’re the company behind the Couchbase open source project, a vibrant community of developers and users
of Couchbase document-oriented database technology. Our flagship product, Couchbase Server, is a packaged
version of Couchbase technology that’s available in Community and Enterprise Editions. We’re known for our easy
scalability, consistent high performance, 24x365 availability, and a flexible data model. Companies like AOL, Cisco,
Concur, LinkedIn, Orbitz, Salesforce.com, Shuffle Master, Zynga and hundreds of others around the world use
Couchbase Server for their interactive web and mobile applications. www.couchbase.com

http://www.couchbase.com/couchbase-open-source-project
http://www.couchbase.com/couchbase-server/overview
http://www.couchbase.com/couchbase-server/editions
http://www.couchbase.com/couchbase-server/why-couchbase
http://www.couchbase.com/couchbase-server/why-couchbase
http://www.couchbase.com/couchbase-server/why-couchbase
http://www.couchbase.com/couchbase-server/why-couchbase
http://www.couchbase.com/customers
http://www.couchbase.com/

