
	

	

Comparing Couchbase Server 3.0.2 with MongoDB 3.0:
Benchmark Results and Analysis

Composed by Avalon Consulting, LLC

Introduction

The data needs of today’s Enterprise require a special set of tools. At the center

of these tools lies the NoSQL database. In recent years, NoSQL has become a

growing part of the modern Enterprise infrastructure. Knowing how to implement

a highly scalable NoSQL database that fits current and future use cases and

scales easily and efficiently is critical in satisfying these ever-growing demands.

It’s important to consider performance, scalability, consistency, and availability

when selecting a NoSQL database. However, this benchmark focuses

exclusively on performance. In an era where applications may have to support

millions of users and where users expect faster and faster responses,

performance can be the deciding factor between success and failure. A high

	

performance NoSQL database must be able to maintain low latency at high

throughput.

In this white paper, we will identify the performance characteristics of two popular

NoSQL databases, Couchbase Server and MongoDB. Through the process of

benchmarking, we will illustrate which of these two technologies performs best

when hit with a balanced workload of reads and updates and there is not enough

memory to cache all of the data in memory. By evaluating how both Couchbase

Server and MongoDB react to this workload, we will gain a better understanding

of which one may be better suited for today’s Enterprise data needs.

The reason we chose to do this benchmark at this time was due to the major

release enhancements announced for MongoDB. MongoDB 3.0 is a significant

release with major improvements, the most notable being the optional storage

engine WiredTiger. MongoDB states a 7-10x improvement of write performance

with WiredTiger. While we did not compare WiredTiger to the default storage

engine, MMAP, we enabled WiredTiger to determine whether or not it addresses

MongoDB performance issues. It’s important to understand that there is more to

performance than the storage engine, but it is important nonetheless.

Benchmarking/Data Specifications

For this benchmark, an equal number of reads and writes were performed on

both Couchbase Server 3.0.2 and MongoDB 3.0. The amount of data utilized for

this benchmark meant that not all data would reside in memory. This was an

important attribute of this benchmark, as we wanted to see how Couchbase

Server and MongoDB would perform outside of memory. Finally, we were

looking for latency to be at or below the 5ms mark. To perform this benchmark

analysis, we chose to use Yahoo Cloud Serving Benchmark (YCSB).

	

__

Testing Methodology

The goal of this benchmark is to show how Couchbase Server and MongoDB

respond to an increasing number of concurrent clients until the read or write

latency exceeds 5ms. The attributes we used to determine this were latency and

throughput. The 95th percentile was used to record latency. The following table

shows how we incremented the request load per test run and how we will store

data for 3 runs:

Clients /
Threads

Run #1
Throughput /
Latency

Run #2
Throughput /
Latency

Run #3
Throughput /
Latency

2 / 70
3 / 105
4 / 140
5 / 175
6 / 210
7 / 245
8 / 280
9 / 315
10 / 350
11 / 385
12 / 420
13 / 455
14 / 490
15 / 525

System Infrastructure

Our infrastructure consisted of 9 i2.2xlarge EC2 instances to run the
NoSQL databases:

• 8 vCPU
• 61 GB Memory
• CentOS 6

For running the YCSB client threads we used r3.8xlarge for each client
instance:

• 32 vCPU
• 244 GB Memory
• Amazon Linux

Other System Configurations

• In order to avoid potential performance issues, numa was disabled on the

NoSQL EC2 instances.

• Memory utilization was set for each NoSQL instance in order to capture

how Couchbase Server and MongoDB perform outside of RAM.

o 10GB of memory was used for primary data on all 9 Couchbase

Server nodes.

o 30GB of memory was used for primary data on the 3 MongoDB

primary nodes.

	

Couchbase Server Topology

The Couchbase Server topology is simple. Each client responsible for running

YCSB communicated directly with the Couchbase Server nodes. The range of

clients that Couchbase Server was able to handle before exceeding the 5ms

latency threshold was 2 – 23.

	

MongoDB Topology

This image shows the MongoDB topology for the benchmark. For running the

benchmark, we had YCSB located on the same node as the router. Each

client/router node communicates via the configuration server nodes, which

contains metadata pertaining to each shard. The range of clients that MongoDB

was able to handle before exceeding the 5ms latency threshold was 2 – 7.

As shown in the topology diagrams for Couchbase Server and MongoDB,

Couchbase Server has 3x as many active nodes as MongoDB. In order to get

MongoDB to have the 9 active nodes that Couchbase Server has, we would have

had to provision 3x the number of servers for MongoDB. When you consider

hardware and subscription costs, it would not be fair to do this, as cost to

	

implement is a very real factor to consider here. This is a clear disadvantage that

you must deal with when implementing MongoDB.

Benchmark Results

Throughput

The following are the throughput results for Couchbase Server and MongoDB

Couchbase Server provided 2.5x the throughput of MongoDB with the same
number of concurrent clients - 245. This is where MongoDB exceeded the
maximum latency of 5ms. While scalability is important, so is concurrency - the
ability for a database to accommodate a high number of concurrent clients before
scaling is required. MongoDB was overwhelmed by a 2x increase in the number of
concurrent clients, and latency suffered. Couchbase Server, with a 13x increase,
showed increased throughput and latency well below the 5ms limit.

MongoDB Couchbase Server
245 Concurrent Clients 72K Ops / Sec 186K Ops / Sec

0	

50,000	

100,000	

150,000	

200,000	

250,000	

300,000	

350,000	

70	
 105	
 140	
 175	
 210	
 245	
 280	
 315	
 350	
 385	
 420	
 455	
 490	
 525	

Th
ro
ug
hp
ut
	
 o
ps
/s
ec
	

Concurrent	
 Clients	

Couchbase	

MongoDB	

	

Read Latency (Lower is Better)

The following are the read latency results for Couchbase Server and MongoDB

Couchbase Server provided 4x better read latency than MongoDB with the same
number of concurrent clients - 245. Like throughput, concurrency is important.
MongoDB latency increased by over 50% as the number of concurrent clients was
increased by 50%. However, Couchbase Server latency increased by much
smaller margins - as little as 10%.

MongoDB Couchbase Server
245 Concurrent Clients 4.19ms .96ms

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

4.5	

70	
 105	
 140	
 175	
 210	
 245	
 280	
 315	
 350	
 385	
 420	
 455	
 490	
 525	

La
te
nc
y	

(m
s)
	
 9
5t
h 	
 P
er
ce
nt
ile
	
 	

Concurrent	
 Clients	

Couchbase	

MongoDB	

	

Update Latency (Lower is Better)

The following are the update latency results for Couchbase Server and MongoDB

Couchbase Server provided 5x better update latency than MongoDB with the
same number of concurrent clients - 245. Update latency quickly increased as we
increased the number of concurrent clients. MongoDB latency continued to
increase at levels much higher than that of Couchbase, until reaching the latency
threshold of 5ms. At this point, with MongoDB you would need to consider
adding additional nodes to handle additional concurrent clients.

MongoDB Couchbase Server
245 Concurrent Clients 5.38ms .91ms

0	

1	

2	

3	

4	

5	

6	

70	
 105	
 140	
 175	
 210	
 245	
 280	
 315	
 350	
 385	
 420	
 455	
 490	
 525	

La
te
nc
y	

(m
s)
	
 9
5t
h 	
 P
er
ce
nt
ile
	
 	

Concurrent	
 Clients	

Couchbase	

MongoDB	

	

Couchbase Server Max Load Testing

These additional tests were performed to identify how many concurrent clients
were necessary to saturate Couchbase Server. While MongoDB exceeded the
5ms limit at 245 concurrent clients, Couchbase Server was well below the limit at
525. We wanted to find out just how many concurrent clients Couchbase Server
could support.

Couchbase Server did not exceed the maximum latency of 5ms until 805
concurrent clients. These last tests indicate Couchbase Server can reach up to
4.5x the throughput of MongoDB while maintaining latency of 5ms or less.
Assuming MongoDB scales linearly, it would have required 4-5x the number of
nodes to provide the same performance as Couchbase Server.

Conclusion

The workload we used for this benchmark represents a standard Enterprise

scenario of some reads and some updates - common in web and mobile

applications. There are scenarios where a use case may have called for heavy

reads and light updates, reporting, or heavy updates and light reads, sensor

data. We did not cover these scenarios in this benchmark. Overall, we felt that

the balanced workload would cover the broadest range of potential use cases for

enterprise applications.

Based on the results of this benchmark, Couchbase Server was clearly more

capable of handling the workload we threw at it. Couchbase Server displayed

the ability to handle requests and maintain a higher throughput with the low

latency demanded by today’s enterprise web and mobile applications.

The basic clustered architecture of Couchbase Server vs. MongoDB was also a

disadvantage for MongoDB in this case. With Couchbase Server, each of the 9

nodes was an active node. MongoDB, on the other hand, was limited to only 3

active nodes due to having only 1 active node per replica set. In addition, extra

servers were required for MongoDB to fit into this benchmark. For example, as

stated in MongoDB documentation, production instances should have 3

configuration servers. In order to maintain the same setup as the Couchbase

Server configuration, we still needed 9 servers for the 3 shards with 2 replicas in

addition to the configuration server instances.

	

The ability to have pluggable storage engines with MongoDB is a potentially

useful attribute of the NoSQL database. This capability to have pluggable

storage engines will allow it to meet more specific use cases that have specific

data needs and requirements. With WiredTiger, however, we did not see the

efficiency improvements we were hoping to see. MongoDB did showed signs of

stress as we increased the request load. However, MongoDB read latency was

comparable to Couchbase Server under the lighter load cases.

Couchbase outperformed MongoDB in the following areas:

- Concurrency
o Couchbase Server demonstrated better concurrency. It was able to

handle over 3x as many concurrent clients as MongoDB.

- Throughput
o Couchbase Server demonstrated high throughput. Even with the

same number of concurrent clients, Couchbase Server was able to

provide 2.5x the throughput of MongoDB.

- Latency
o Couchbase Server demonstrated lower latency. Even with the

same number of concurrent clients, Couchbase Server was able to

provide 4-5x lower latency than MongoDB.

- Price / Performance Ratio
o Couchbase Server was able to provide 2.5x, potentially 4.5x, the

throughput of MongoDB with the same hardware while meeting the

	

same latency requirements. The cost per operation for Couchbase

Server would be 22-40% of that for MongoDB.

YCSB Setup

Specifications for YCSB workload

• Nodes: 9
• Workload A: 50% reads, 50% updates
• 858GB of Data (Includes Replicas)
• Key Size - 32 bytes
• Value Size - 1K
• Entries - 300,000,000
• Memory Per Node - 30GB
• Primary Data Resident in Memory - 32%
• Request Distribution - Uniform

Results/Data

Couchbase Server Benchmark Results

Clients /
Threads

Run #1
Throughput /
Latency

Run #2
Throughput /
Latency

Run #3
Throughput /
Latency

2 / 70 76,000 ops/sec
Update: .75ms
Read: .76ms

73,000 ops/sec
Update: .77ms
Read: .77ms

73,000 ops/sec
Update: .77ms
Read: .79ms

3 / 105 110,000 ops/sec
Update: .76ms
Read: .78ms

109,000 ops/sec
Update: .77ms
Read: .78ms

108,000 ops/sec
Update: .78ms
Read: .78ms

4 / 140 141,000 ops/sec 136,000 ops/sec 132,000 ops/sec

	

Update: .78ms
Read: .79ms

Update: .81ms
Read: .83ms

Update: .87ms
Read: .89ms

5 / 175 154,000 ops/sec
Update: .88ms
Read: .89ms

147,000 ops/sec
Update: .89ms
Read: .89ms

145,000 ops/sec
Update: .9ms
Read: .98ms

6 / 210 170,000 ops/sec
Update: .92ms
Read: .93ms

159,000 ops/sec
Update: .95ms
Read: .97ms

160,000 ops/sec
Update: .99ms
Read: .99ms

7 / 245 193,000 ops/sec
Update: .91ms
Read: .92ms

189,000 ops/sec
Update: .96ms
Read: .97ms

178,000 ops/sec
Update: 1.19ms
Read: 1.21ms

8 / 280 238,000 ops/sec
Update: .92ms
Read: .92ms

230,000 ops/sec
Update: .96ms
Read: .99ms

201,000 ops/sec
Update: 1.21ms
Read: 1.3ms

9 / 315 245,000 ops/sec
Update: .99ms
Read: 1.06ms

235,000 ops/sec
Update: 1.04ms
Read: 1.10ms

229,000 ops/sec
Update: 1.22ms
Read: 1.32ms

10 / 350 252,000 ops/sec
Update: 1.22ms
Read: 1.22ms

244,000 ops/sec
Update: 1.3ms
Read: 1.31ms

233,000 ops/sec
Update: 1.22ms
Read: 1.35ms

11 / 385 265,000 ops/sec
Update: 1.37ms
Read: 1.41ms

251,000 ops/sec
Update: 1.59ms
Read: 1.65ms

246,000 ops/sec
Update: 1.7ms
Read: 1.42ms

12 / 420 276,000 ops/sec
Update: 1.62ms
Read: 1.64ms

268,000 ops/sec
Update: 1.75ms
Read: 1.8ms

251,000 ops/sec
Update: 1.87ms
Read: 1.93ms

13 / 455 289,000 ops/sec
Update: 1.7ms
Read: 1.71ms

277,000 ops/sec
Update: 1.79ms
Read: 1.87ms

264,000 ops/sec
Update: 1.88ms
Read: 1.88ms

14 / 490 304,000 ops/sec
Update: 1.93ms
Read: 2.01ms

289,000 ops/sec
Update: 2ms
Read: 2.04ms

270,000 ops/sec
Update: 1.94ms
Read: 1.97ms

15 / 525 310,000 ops/sec
Update: 1.99ms
Read: 2.1ms

297,000 ops/sec
Update: 2.11ms
Read: 2.17ms

289,000 ops/sec
Update: 2.10ms
Read: 2.11ms

Couchbase Server Max Load Benchmark Results

18 / 630 318,000 ops/sec

Update: 3.84ms
Read: 3.9ms

19 / 665 320,000 ops/sec
Update: 4.01ms
Read: 4.12ms

20 / 700 325,000 ops/sec
Update: 4.39ms
Read: 4.47ms

21 / 735 327,000 ops/sec
Update: 4.79ms
Read: 4.82ms

22 / 770 333,000 ops/sec

	

Update: 4.93ms
Read: 4.99ms

23 / 805 336,000 ops/sec
Update: 5.12ms
Read: 5.2ms

MongoDB Benchmark Results

Clients /
Threads

Run #1
Throughput /
Latency

Run #2
Throughput /
Latency

Run #3
Throughput /
Latency

2 / 70 37,000 ops/sec
Update: 1.9ms
Read: .98ms

38,000 ops/sec
Update: 1.98ms
Read: 1.12ms

35,000 ops/sec
Update: 1.86ms
Read: 1.10ms

3 / 105 61,000 ops/sec
Update: 2.05ms
Read: 1.42ms

60,000 ops/sec
Update: 2.14ms
Read: 1.62ms

58,000 ops/sec
Update: 1.99ms
Read: 1.72ms

4 / 140 65,000 ops/sec
Update: 2.97ms
Read: 2.01ms

68,000 ops/sec
Update: 3.01ms
Read: 2.64ms

68,000 ops/sec
Update: 3.12ms
Read: 2.71ms

5 / 175 67,000 ops/sec
Update: 3.54ms
Read: 3.16ms

67,000 ops/sec
Update: 3.47ms
Read: 3.04ms

66,000 ops/sec
Update: 3.63ms
Read: 3.41ms

6 / 210 70,000 ops/sec
Update: 4.49ms
Read: 3.5ms

69,000 ops/sec
Update: 4.41ms
Read: 3.39ms

67,000 ops/sec
Update: 4.7ms
Read: 4.01ms

7 / 245 74,000 ops/sec
Update: 5.38ms
Read: 4.19ms

73,000 ops/sec
Update: 5.21ms
Read: 4.12ms

71,000 ops/sec
Update: 5.39ms
Read: 4.49ms

