
This document evaluates the performance of the three most popular

NoSQL DBs under different cluster configurations and workloads—

using the YCSB benchmarking tool.

NoSQL Performance Benchmark 2018:

Couchbase Server v5.5, MongoDB v3.6, and DataStax Enterprise v6 (Cassandra)

By the Engineering Team at Altoros

Q3 2018

2

Click for more
NoSQL research!

engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266

Table of Contents
1. Introduction ... 3

2. Testing Environment .. 3

2.1 Hardware configuration ... 3

2.2 Couchbase Server сluster сonfiguration .. 4

2.3 MongoDB cluster configuration .. 4

2.4 DataStax Enterprise (Cassandra) cluster configuration ... 5

3. Workloads and Tools .. 6

3.1 Workloads ... 6

3.2 Tools ... 6

4. Performance Results .. 8

4.1 Workload A: The update-heavy mode ... 8

4.1.1 Workload definition and model details ... 8

4.1.2 Query .. 8

4.1.3 Evaluation results .. 9

4.1.4 Summary .. 10

4.2 Workload E: Scanning short ranges .. 10

4.2.1 Workload definition and model details ... 10

4.2.2 Query .. 11

4.2.3 Evaluation results .. 12

4.2.4 Summary .. 13

4.3 The Pagination Workload: Filter with OFFSET and LIMIT ... 13

4.3.1 Workload definition and model details ... 13

4.3.2 Query .. 15

4.3.3 Evaluation results .. 15

4.3.4 Summary .. 16

4.4 The Join Workload: JOIN operations with grouping and aggregation 16

4.4.1 Workload definition and model details ... 16

4.4.2 Query .. 18

4.4.3 Evaluation results .. 18

4.4.4 Summary .. 20

5. Conclusion .. 20

6. About the Authors .. 21

Appendix A .. 22

A.1 Workload A: The update-heavy mode ... 22

A.2 Workload E: Scanning short ranges .. 23

A.3 The Pagination Workload: Filter with OFFSET and LIMIT ... 25

A.4 The Join Workload: JOIN operations with grouping and aggregation 26

Appendix B .. 27

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros

3

Click for more
NoSQL research!

engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266

1. Introduction

NoSQL encompasses a wide variety of database technologies that were developed in response to the

rise in volume of data and the frequency with which this data is accessed. In contrast, relational

databases were not designed to cope with scalability and agility challenges that modern applications

face, nor were they built to take advantage of the inexpensive storage and processing power available

today. New-generation NoSQL solutions help to achieve the highest levels of performance and uptime

for workloads.

This report compares performance results of the three popular NoSQL databases: Couchbase Server

v5.5, MongoDB v3.6, and DataStax Enterprise v6 (Cassandra). The goal of this report is to measure

the relative performance in terms of latency and throughput each database can achieve. The

evaluation was conducted on different cluster configurations—namely, on 4, 10, and 20 nodes—and

under four different workloads.

The first workload performs under an update-heavy mode, invoking 50% of reads and 50% of

updates. The second one is a short-range scan workload, invoking 95% of scans and 5% of updates,

where short ranges of records are queried instead of the individual ones. The third workload

represents a query with a single filtering option to which an offset and a limit are applied. Finally, the

fourth workload is a JOIN query with grouping and ordering applied.

As a default tool for evaluation, we used the Yahoo! Cloud Serving Benchmark (YCSB), an open-

source specification and program suite for evaluating retrieval and maintenance capabilities of

computer programs.

2. Testing Environment

2.1 Hardware configuration

Each of the NoSQL DBs was deployed on 4-, 10-, and 20-node clusters in the same geographical

region. The clusters were deployed on Amazon’s storage-optimized extra-large instances.

Table 2.1 A detailed description of the Amazon EC2 instance the clusters were deployed to

Family Storage optimized

Type i3.2xlarge

vCPUs 8

Memory (GiB) 61

Instance storage (GB) 1 × 1,900 (SSD)

EBS-optimized available Yes

Network performance Up to 10 GB

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
https://en.wikipedia.org/wiki/YCSB

4

Click for more
NoSQL research!

engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266

Platform 64-bit

Operating system Ubuntu 16.04 LTS

To provide verifiable results, benchmarking was performed on Amazon Elastic Compute Cloud

instances. The YCSB client was deployed to five Amazon’s compute-optimized large instances.

Table 2.2 A detailed description of the Amazon EC2 instance the YCSB client was deployed to

Family Compute optimized

Type c4.4xlarge

vCPUs 8

Memory (GiB) 15

EBS-optimized available Yes

Network performance High

Platform 64-bit

Operating system Ubuntu 16.04 LTS

2.2 Couchbase Server cluster configuration

Couchbase Server is both a JSON-document and key-value distributed NoSQL database. It

guarantees high performance with a built-in object-level cache, asynchronous replication, and data

persistence. The database is designed to scale out or up compute-, RAM-, and storage-intensive

workloads independently.

Here, we evaluated Couchbase Server Enterprise Edition 5.5.0, build 2940. Our team used a

symmetric scale-out strategy, giving each node an equal share of work. Regardless of cluster size (4,

10, or 20 nodes), each node comprised Data Service, Index Service, and Query Service. Search,

Analytics, and Eventing Services were turned off, and no resources were allocated for them, because

the corresponding features were not the point of interest for this benchmark. Each Data Service was

allocated 60% of available RAM (36,178 MB) with a Couchbase bucket type used. Each bucket had a

single replica configured. Index Service was allocated about 40% of available RAM (about 24 GB)

with memory optimized indexes in use. Each created index was replicated to all Index Services.

2.3 MongoDB cluster configuration

MongoDB is a document-oriented NoSQL database. It has extensive support for a variety of

secondary indexes and API-based ad-hoc queries, as well as strong features for manipulating JSON

documents. The database puts forward a separate and incremental approach to data replication and

partitioning, which happen as completely independent processes.

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros

5

Click for more
NoSQL research!

engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266

MongoDB v3.6 was under evaluation. MongoDB employs a hierarchical cluster topology that

combines router processes, configuration servers, and data shards. For each cluster size (4, 10, and

20 nodes), production configuration has been used for deployment:

● A config server was deployed as a three-member replica set (a separate machine, not counted

in a cluster).

● Each shard was deployed as a three-member replica set (one primary, one secondary, and

one arbiter).

● Three mongos routers were deployed on each client.

Manual installation and configuration for a MongoDB sharded cluster is a fairly complicated

procedure. In short, one needs to satisfy installation prerequisites, then separately configure all the

data shards, configuration servers, and sharding routers to finally join those components into a

cluster.

MongoDB distributes data, or shards, at the collection level. Sharding partitions the collection’s data

by a shard key. Hash-based partitioning was used for all the models. To support hash-based

sharding, MongoDB provides a hashed index type, which indexes the hash of a field value. With

hash-based partitioning, two documents with “close” shard key values are unlikely to be part of the

same chunk. This ensures a more random distribution of a collection in the cluster.

2.4 DataStax Enterprise (Cassandra) cluster configuration

DataStax Enterprise (Cassandra) is a wide-column store NoSQL database management system

designed to handle large amounts of data across many commodity servers, providing high availability

with no single point of failure.

This benchmark evaluates DataStax Enterprise v6. In the table below, we detailed the changes

applied to each node on 4-, 10-, and 20-node clusters.

Table 2.4 The changes applied to each node on each cluster

cassandra.yaml

memtable_heap_space_in_mb 16,384

memtable_cleanup_threshold 0.11

memtable_flush_writers 40

row_cache_size_in_mb 20,280

commitlog_total_space_in_mb 1,969

cdc_total_space_in_mb 984

num_token 256

endpoint_snitch Ec2Snitch

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros

6

Click for more
NoSQL research!

engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266

cassandra-env.sh

MAX_HEAP_SIZE 20 GB

HEAP_NEWSIZE 1,800 MB

keyspace configuration

replication _factor 2

class SimpleStrategy

DURABILITY_WRITE false

3. Workloads and Tools

Database performance was defined by the speed at which a database processed basic operations. A

basic operation is an action performed by a workload executor, which drives multiple client threads.

Each thread executes a sequential series of operations by making calls to a database interface layer

both to load a database (the load phase) and to execute a workload (the transaction phase). The

threads throttle the rate at which they generate requests, so that we may directly control the offered

load against the database. In addition, the threads measure latency and the achieved throughput of

their operations and report these measurements to the statistics module.

3.1 Workloads

The performance of each database was evaluated under the following workloads:

1) Workload A: update heavily—50% read and 50% update, request distribution is Zipfian.

2) Workload E: scan short ranges—95% scan and 5% update, request distribution is Uniform.

3) Workload Query 1: filter with offset and limit.

4) Workload Query 2: JOIN operations with grouping and aggregation (in case of Couchbase,

ANSI JOIN was evaluated, as well).

3.2 Tools

We have used the YCSB client as a worker, which consists of the following components:

● Workload executor

● The YCSB client threads

● Extensions

● Statistics module

● Database connectors

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros

7

Click for more
NoSQL research!

engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266

Figure 3.1 The components of the YCSB client

The workloads were tested under the following conditions:

● Data fits the memory.

● Durability is false.

● Replication is set to “1” signifying that just a single replica is available for each data set.

Workloads A and E are standard workloads provided by YCSB. Default data models were used for

this workloads. Workloads Query 1 and Query 2 represent scenarios from real-life domains: finance

(server-side pagination for listing filtered transactions) and e-commerce (series of reports on various

products and services utilized by customers). To emulate this scenarios on a domain level, customer-

order model was introduced for this workloads:

Figure 3.2 A graphic representation of the customer-order model

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros

8

Click for more
NoSQL research!

engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266

4. Performance Results

4.1 Workload A: The update-heavy mode

4.1.1 Workload definition and model details

Workload A is an update-heavy workload, which simulates typical actions of an e-commerce solution

user: 50% of read operations and 50% of updates. This is a basic key-value workload. The scenario

was executed with the following settings:

● The read/update ratio was 50%–50%.

● The Zipfian request distribution was used.

● The size of a data set scaled in accordance with the cluster size: 50 million records (1 KB in

size each, consisting of 10 fields and a key) on a 4-node cluster, 100 million records on a 10-

node cluster, and 200 million records on a 20-node cluster.

Couchbase Server stores data in buckets, which are the logical groups of items—key-value pairs.

vBuckets are physical partitions of the bucket data. By default, Couchbase Server creates a number

of master vBuckets per bucket (typically 1,024) to store bucket data and evenly distribute vBuckets

across all cluster nodes. Querying with document keys is the most efficient way, because a query

request is sent directly to a proper vBucket that holds target documents. This approach does not

require any index creation and is the fastest way to retrieve a document due to the key-value storage

nature. The workload was executed without any index creation.

DataStax Enterprise (Cassandra) cluster has been preliminary warmed up to cache the results in

memory (20 GB of RAM has been allocated for cache), which resulted in a hit rate up to 60%.

4.1.2 Query

We used the following queries to generate Workload A.

Table 4.1 Evaluated queries for Workload A

Couchbase N1QL MongoDB Query Cassandra CQL

bucket.get(docId,

RawJsonDocument.class)
db.ycsb.find({_id: $1})

SELECT *

FROM table

WHERE id = $1

LIMIT 1

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros

9

Click for more
NoSQL research!

engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266

4.1.3 Evaluation results

Under an in-memory data set with no disk hits, Couchbase significantly outperformed both MongoDB

and Cassandra across all cluster topologies. The database was able to process up to 208,000

ops/sec on a 4-node cluster, while Cassandra handled about 77,500 ops/sec and MongoDB only

41,900 ops/sec. On a 10-nodes cluster, Couchbase achieved about 302,000 ops/sec, MongoDB

about 102,000 ops/sec, and Cassandra about 128,000 ops/sec. On a 20-node cluster, it was

observed that five workload clients (with 700 threads) were not enough to saturate the Couchbase

cluster any further, therefore performance marginally improved to 320,000 ops/sec, whereas

MongoDB performance grew to 177,500 ops/sec, and Cassandra to almost 200,000 ops/sec.

Figure 4.1.3 Performance results under Workload A on 4-, 10-, and 20-node clusters

Couchbase exhibits the consistency of request latency on a 10-node as well as on a 20-node cluster,

processing 700 calling threads in 2.24 ms. MongoDB scaled well with continuously decreasing

request processing time—from 6 ms on a 10-node cluster to 3.2 ms on a 20-node cluster with the

same amount of calling threads.

A request latency spike on a 4-node cluster for MongoDB was caused by the Sharded Cluster

Balancer. The balancer is a background process that monitors the number of chunks on each shard.

When the number of chunks on a given shard reaches specific migration thresholds, the balancer

attempts to automatically migrate chunks between shards and reach an equal number of chunks per

shard, therefore can impact performance while the procedure takes place. On a bigger clusters, the

balancer has less impact on performance, because the data chunks are distributed across more

nodes, therefore the migration thresholds are reached more rarely.

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros

10

Click for more
NoSQL research!

engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266

DataStax (Cassandra) appeared to be scaling well with the constantly decreasing request latency—

from 9.5 ms on a 4-node cluster to 5.45 ms on a 10-node cluster, and 3.47 ms on a 20-node cluster.

Still, it underperformed as compared to Couchbase, which exhibited 50% better throughput and lower

latency on 20-node cluster.

It should be also noted that both Couchbase and Cassandra did not hit the maximum throughput at

700 client threads, but the throughput was growing constantly with the latency remaining relatively

low. To evaluate the ability to handle more clients with a higher throughput, additional tests on a 10-

client environment against a 4-node cluster were carried out. On a 10-client environment—each

running up to 150 threads—Cassandra achieved its limit of about 83,000 ops/sec at 1,200 calling

threads and stopped growing, handling less than half the requests compared to Couchbase.

4.1.4 Summary

In the above configurations, Couchbase v5.5 exhibits much better (up to 4x better latency and up to

3x better throughput) performance at scale than MongoDB v3.6 and DataStax Enterprise v6

(Cassandra). Meanwhile, MongoDB reaches its limit at about 500–700 threads and does not scale

further. Both MongoDB and DataStax Enterprise (Cassandra) show consistent improvement in the

overall throughput proportionally to the cluster size growth. For larger cluster sizes, we observed that

five client nodes (that we kept consistent throughout our tests) were not enough to fully saturate a 20-

node Couchbase, MongoDB, and Cassandra cluster, therefore we got a marginal performance

improvement than the cluster is capable of delivering.

For more detailed comparison results, please refer to Figures A.1.1–A.1.3 in the “A.1 Workload A:

The update-heavy mode” section of Appendix A.

4.2 Workload E: Scanning short ranges

4.2.1 Workload definition and model details

Workload E is a short-range scan workload in which short ranges of records are queried, instead of

individual ones. This workload simulates threaded conversations, where each scan is for the posts in

a given thread (assuming the entries to be clustered by ID). The scenario has been executed under

the following settings:

● The read/update ratio was 95%–5%.

● The Zipfian request distribution was used.

● The size of a data set scaled in accordance with the cluster size: 50 million records (1 KB in

size each, consisting of 10 fields and a key) on a 4-node cluster, 100 million records on a 10-

node cluster, and 250 million records on a 20-node cluster.

● The maximum scan length reached 100 records.

● Uniform was used as a scan length distribution.

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros

11

Click for more
NoSQL research!

engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266

Because the scan operation is performed over the primary key in Couchbase, the following primary

index has been created:

CREATE PRIMARY INDEX `ycsb_primary` ON `ycsb`

USING GSI WITH {"nodes": [...]}

The primary index is simply an index of the document key on the entire bucket. The primary index

contains a full set of keys in a given keyspace. It is widely used for full bucket scans (primary scans),

when the query does not have any filters (predicates) or when no other index or access path can be

used. From the data structure point of view, the primary index is a skip list containing the document

IDs with a binary search complexity.

Due to the cluster topology where each cluster node comprises Data and Query Services, primary

indexes are scaled in accordance with cluster size and provide linear growth of throughput

proportionally to the number of nodes. If we take in mind the complexity of a binary search by an

index, when a data set grows from 50 million records to 125 million records, the search time increases

by 5%. This issues is mitigated by increasing a cluster size by two times.

After a cluster doubles in size, about 90% of throughput growth is expected. This is explained by a

double growth of Query Services divided by the expected 5% slowdown of scan operation per node.

MongoDB distributes data using a shard key. There are two types of shard keys supported by this

database: range-based and hash-based. The range-based partitioning supports more efficient range

queries. Given a range query on a shard key, a query router can easily determine which chunks

overlap this range and route the query to only those shards that contain these chunks. However, the

range-based partitioning can result in an uneven data distribution, which may negate some of the

benefits of sharding.

The hash-based partitioning ensures an even distribution of data at the expense of efficient range

queries. Hashed key-value results in random distribution of data across chunks and, therefore,

shards. However, random distribution makes it more likely that a range query on a shard key will not

be able to target a few shards but would more likely query every shard in order to return a result. The

hash-based partitioning was used for all partitioning, so some performance degradation is expected

here.

The scan operation implemented in YCSB for Cassandra is based on the token function. The return

result of a scan operation depends on the selected partitioner. For this benchmark, the default

Murmur3Partitioner was used. However, Murmur3Partitioner simply calculates a key hash, but does

not preserve ordering—which may result in an unexpected return of a scan operation. Additionally,

Cassandra does not support any ordering by the partitionary key.

4.2.2 Query

The following queries were used to perform Workload E.

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros

12

Click for more
NoSQL research!

engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266

Table 4.2 Evaluated queries

Couchbase N1QL MongoDB Query Cassandra CQL

SELECT RAW meta().id

FROM `ycsb`

WHERE meta().id >= $1

ORDER BY meta().id

LIMIT $2

db.ycsb.find({

 _id: {

 $gte: $1

 }, {

 _id: 1

 }).sort({

 _id: 1

 }).limit($2)

SELECT id

FROM table

WHERE token(id) >=

token($1)

LIMIT $2

4.2.3 Evaluation results

Couchbase demonstrated great scalability with the linear growth of throughput proportionally to the

number of cluster nodes: from 10,500 ops/sec on a 4-node cluster to 23,500 ops/sec on a 10-node

cluster. On a 20-node cluster, the throughput reached 32,000 ops/sec, which is about 36% more than

on a 10-node cluster, with the request latency remaining about 10 millisecond due to the usage of a

primary index and the replication of Index Service.

Figure 4.2.3 Performance results under Workload E on 4-, 10-, and 20-node clusters

In contrast, MongoDB was able to process about 14,000 ops/sec regardless of cluster and data set

sizes. It is more than Couchbase was able to handle on a 4-node cluster and less than on 10- and 20-

node clusters.

Cassandra showed rather low performance with the scan operation: around 1,400 ops/sec on a 4-

node cluster, 4,000 ops/sec on a 10-node cluster, and around 7,000 ops/sec on a 20-node cluster.

However, Cassandra was able to achieve a linear growth of performance across all clusters and data

sets. This can be explained by the fact that the coordinator node sends scan requests to other nodes

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros

13

Click for more
NoSQL research!

engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266

in a cluster responsible for specific token ranges. The more nodes the cluster has, the less data falls

in the target range on each node, thus the less data each node has to return. It results in reduced per-

node request processing time. As the coordinator sends the requests in parallel, the overall request

processing time depends on a request latency of each cluster node—such a latency decreases with

cluster growth. This is proved by the following brief analysis: the latency decreases from 511 ms on a

4-node cluster to 179 ms on a 10-node cluster, and to 100 ms on a 20-node cluster.

4.2.4 Summary

MongoDB performed around 30% better than Couchbase on relatively small sized clusters and data

sets (4 nodes and 50 million of records each 1 KB in size) but remained flat irrespective of the cluster

size. At the same time, Couchbase demonstrated much better scaling capabilities and outperformed

MongoDB on bigger clusters by showing linear throughput growth on 10- and 20-node clusters with

data sets of 125 and 250 million records correspondingly. MongoDB showed the ability to handle the

increasing amount of data with the throughput remaining the same. Cassandra provided better

scalability in comparison to MongoDB and Couchbase, preserving linear performance growth, but still

being way behind Couchbase and MongoDB in terms of overall operation performance.

For more detailed comparison results, please refer to Figures A.2.1–A.2.3 in the “A.2 Workload E:

Scanning short ranges” section of Appendix A.

4.3 The Pagination Workload: Filter with OFFSET and LIMIT

4.3.1 Workload definition and model details

Pagination Workload is a query with a single filtering option, an offset, and a limit. The workload

simulates a selection by field with pagination. The scenario was executed under the following settings:

● The read ratio is 100%.

● The size of a data set scaled in accordance with the cluster size: 5 million customers (4 KB in

size each) on a 4-node cluster, 25 million customers on a 10-node cluster, and 50 million

customers on a 20-node cluster.

● The maximum of a query length reached 100 records.

● Uniform was used as a query length distribution.

● The maximum query offset reached 5 records.

● Uniform was used as a query offset distribution, as well.

The primary index of Couchbase allows to query any field of a document, however, this type of

querying is rather slow. For the sake of fast query execution, secondary indexes are created for

specific fields by which data is filtered. Couchbase provides two index storage modes—memory

optimized and disk-optimized (standard) ones.

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros

14

Click for more
NoSQL research!

engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266

Memory-optimized indexes use an in-memory database with a lock-free skip list, which has a

probabilistic ordered data structure and, thus, performs at in-memory speeds. The search is similar to

a binary search over linked lists with the O(log n) complexity. The lock-free skip list is used to

provide non-blocking reads/writes and to maximize utilization of CPU cores. On top of a lock-free skip

list, there is a multi-version manager responsible for regular snapshotting in the background.

Memory-optimized indexes reside in memory and, thus, require the amount of RAM available to fit all

the data inside it. The indexes on a given node will stop processing further mutations if a node runs

out of index RAM quota. The index maintenance is paused until sufficient amount of memory

becomes available on the node. Since the data set was required to fit the available memory, memory-

optimized indexes fit the requirements well.

Memory-optimized global secondary indexes were created for filtering fields with index replication on

each cluster node.

CREATE INDEX `ycsb_address_country` ON `ycsb` (address.country)

USING GSI WITH {"nodes": [...]}

MongoDB uses mongos instances to route queries and operations to shards in a sharded cluster. If

the result of the query is not sorted, the mongos instance opens a result cursor that “round robins”

results from all cursors on the shards. If the query limits the size of the result set using the limit()

cursor method, the mongos instance passes that limit to the shards and then reapplies the limit to

the result before returning it to the client. If a query specifies a number of records to skip using the

skip() cursor method, the mongos cannot pass the skip to the shards. Instead, the mongos

retrieves unskipped results from the shards and skips the appropriate number of documents when

assembling the complete result. However, when used in conjunction with limit(), the mongos will

pass the limit plus the value of skip() to the shards to improve the efficiency of these operations.

For better performance, additional secondary index was added to a filtered field:

db.customer.ensureIndex({ "address.country": 1 });

Data filtering is not a typical case for Cassandra, as the database is designed to be queried by a

primary key. The following two data filtering strategies were evaluated:

● Using a secondary index. It is a default way of querying by a non-partitioning key in

Cassandra. The index table for a secondary index is stored on each node in a cluster. So,

querying via a secondary index can have an adverse impact on performance due to poor

scalability.

● Using synthetic sharding. Under this approach, an extra field (e.g., shard_id - [1-n])

should be added to the primary key, which consists of shard_id and a filtering field. Using

shard_id, we can control distribution between nodes. In such a case, any queries should be

repeated n times across each shard_id to further aggregated a final result.

Also, Cassandra does not support the OFFSET operation, so it was emulated in the code.

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros

15

Click for more
NoSQL research!

engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266

4.3.2 Query

The following queries were used to perform Workload Q1.

Table 4.3 Evaluated queries

Couchbase N1QL MongoDB Query Cassandra CQL

SELECT RAW meta().id

FROM `ycsb`

WHERE

address.country='$1'

OFFSET $2

LIMIT $3

db.customer.find({

 address.country: $1

 }, {

 _id: 1

 })

 .skip($2)

 .limit($3)

SELECT id

FROM table

WHERE

address_country = $1

LIMIT $2

4.3.3 Evaluation results

For Couchbase, the use of memory optimized indexes resulted in pretty high performance of the filter

operation with offset and limit applied. This way, Couchbase significantly outperformed MongoDB. On

a 4-node cluster, Couchbase showed an average 36,700 ops/sec throughput with a latency around 8–

10 milliseconds versus 11,000 ops/sec for MongoDB. In addition to that, Couchbase showed great

scalability with 83,500 ops/sec throughput on a 10-node cluster. (The throughput increased with a

cluster size growth due to the Index Service replication and load balancing.)

On a 20-node cluster with a data set of 100 million records, the throughput reached up to 95,000

ops/sec. It is 14% more than on a 10-node cluster (keeping the workload clients to 5 nodes and

number of threads unchanged to 700 throughout all the tests) with a data set of 50 million. MongoDB

displayed same performance regardless of data set and cluster sizes.

Figure 4.3.3 Performance results under the Pagination Workload on 4-, 10-, and 20-node clusters

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros

16

Click for more
NoSQL research!

engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266

Two filtering strategies were evaluated for Cassandra. The secondary indexes solution achieved up to

1,700 ops/sec on a 4-node cluster. On a 10-node cluster, the latency increased dramatically, and

requests started failing with a timeout. In this case, further workload evaluation on a 20-node cluster

was meaningless because of the cluster’s inability to handle it. The second approach—synthetic

sharding—resulted in around 50 ops/sec throughput on a 4-node cluster, so there was no sense in

further evaluation on 10- and 20-node clusters.

4.3.4 Summary

Couchbase exhibits multiple times (8x to 9x) higher throughput and relatively low latencies for the

filter operation compared to MongoDB and Cassandra. MongoDB remained flat with its performance

even when the cluster size scaled. Meanwhile, Couchbase scaled linearly due to memory-optimized

indexes and an out-of-the-box load balancing and scaling of Query and Index Services. Cassandra

does not seem to be a good choice when a business scenario requires data filtering not using a

primary key, as the database is not able to handle increasing loads.

For more detailed comparison results, please refer to Figures A.3.1–A.3.3 in the “A.3 Pagination

Workload: Filter with OFFSET and LIMIT” section of Appendix A.

4.4 The Join Workload: JOIN operations with grouping and

aggregation

4.4.1 Workload definition and model details

Workload Query 2 is a JOIN query with grouping and ordering applied. The workload simulates a

selection of complex child-parent relationships with categorization employed. The scenario was

executed under the following settings:

● The read ratio was 100%.

● The size of a data set scaled in accordance with the cluster size: 5 million customers and 5

million orders (4.5 KB in size each) on a 4-node cluster, 25 million customers and 25 million

orders on a 10-node cluster, and 50 million customers and 50 million orders on a 20-node

cluster.

● The maximum of a query length reached 100 records.

● Uniform was used as a query length distribution.

● The maximum of a query offset reached 5 records.

● Uniform was used as a query offset distribution, as well.

There are different types of JOIN operations available out-of-the-box with the N1QL query engine in

Couchbase:

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros

17

Click for more
NoSQL research!

engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266

● Index JOIN is used when one side of JOIN has to be document key(s) employing the ON

KEYS statement.

● ANSI JOIN is applicable to arbitrary expressions on any field in a document, standard JOIN

statement, with a nested loop under the hood. N1QL supports the standard INNER, LEFT

OUTER, and RIGHT OUTER joins.

● ANSI HASH JOIN creates an in-memory hash table for one side of the JOIN operation

(usually, the smaller one) used by the other side to find matches. It can provide performance

optimization under suitable conditions.

Only the first two types—Index JOIN and ANSI JOIN—were evaluated under this benchmark. In

addition to that, a dedicated covering index was used, because it contained all the fields required by

the query. This way, a query engine skips the whole document retrieval from data nodes after the

index selection is made. Therefore, the query execution plan only consists of indexes resolution

without a time-consuming document retrieval over the network, which results in a significant query

performance boost.

The following covering index has been created.

CREATE INDEX `ycsb__address_month_orders_price` ON `ycsb`

(address.zip, month, order_list, sale_price)

USING GSI WITH {"nodes": [...]}

MongoDB ensures the $lookup aggregation out-of-the-box to apply a left outer JOIN over an

unsharded collection in the same database. It helps to filter document keys from the “joined” collection

for further processing. Unfortunately, MongoDB v3.6 did not support the $lookup aggregation on

sharded collections when the evaluation was carried out. So, in order to evaluate the JOIN workload,

an alternative solution was employed. One way to work with joins on a non-relational database is to

denormalize a data model, embed the elements into the parent objects, and perform a regular query.

Still, this approach invokes additional redundancy and extra storage costs, as well as impacts the

read/write performance.

Another way is to model a dedicated “joining table” and then query its elements by a partition key,

which generally becomes identical to read by key. This approach leads to data duplication and

increase in write complexity through the necessity to support consistency between models, which also

causes a significant write-performance downgrade. Furthermore, the approach brings along additional

storage costs. The same specific data modeling approach can be applied to all the databases under

evaluation, but it drives to dramatically varying results. This is the reason why we were considering a

similar business case with two different models available: customers and orders. In this case, the

JOIN operation was a simple two-phase read with filtering, which had a significant impact on the

overall JOIN operation performance.

Cassandra also does not have an out-of-the-box JOIN operation support. The alternative solutions

provided for MongoDB are applicable to Cassandra, too. However, the two-phase read approach

does not fit the Cassandra paradigm and appears to be non-scalable and non-performant, because it

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros

18

Click for more
NoSQL research!

engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266

requires the use of secondary indexes and, therefore, does not work on large data sets. For this

reason, the second approach—with modeling an extra joining table—was evaluated keeping in mind

all the drawbacks and side effects it brings. Because it resulted in querying by a partitioning key with

the SUM aggregation and the corresponding read performance, the approach was excluded from the

further comparison, because we were not evaluating the partition-key reads only.

In terms of the read data, the performance under the dedicated joining table approach reached about

59,000 ops/sec on a 4-node cluster, about 159,000 ops/sec on a 10-node cluster, and up to 253,000

ops/sec on a 20-node cluster.

4.4.2 Query

The following queries were used to simulate the Join Workload.

Table 4.4 Evaluated queries

Couchbase N1QL MongoDB Query Cassandra CQL

SELECT o2.month,

c2.address.zip,

SUM(o2.sale_price)

FROM `ycsb` c2

INNER JOIN `ycsb` o2

ON (META(o2).id IN

c2.order_list)

WHERE c2.address.zip =

$1

AND o2.month = $2

GROUP BY o2.month,

c2.address.zip

ORDER BY

SUM(o2.sale_price)

$r1 =

db.customer.find({

 address.zip: $1

 }, {

 address.zip: 1,

 order_list: 1

 })

$r2 =

db.order.aggregate([

{

 $match: {

 $and: [{

 _id: {

 $in: $r1.order_list

 }

 }, {

 month: $2

 }]

}}, {

 $group: {

 _id: null,

 sum: {

 $sum: “$sale_price”

 }

}}])

SELECT month, zip,

SUM(sale_price) FROM

customer_orders_join

WHERE zip = $1 AND

month = $2

4.4.3 Evaluation results

Couchbase indexes and ANSI JOINs showed consistent performance on all cluster topologies as the

number of documents scaled and the cardinality grew from 100 to 500 qualified documents per query.

In general, Couchbase significantly outperformed MongoDB regardless of data set and cluster sizes

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros

19

Click for more
NoSQL research!

engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266

thanks to different types of JOIN operations available out of the box. Couchbase was able to execute

around 1,180 ops/sec on a 4-node cluster (with a data set of cardinality 100) at an average request

latency of about 590 milliseconds (using 700 client threads).

Figure 4.4.3.1 Performance results under Join Workload on 4-, 10-, and 20-node clusters

On a 10-node cluster (with a data set of cardinality 250), Couchbase performed at about 1,100

ops/sec at an average request latency of 650 milliseconds (using 700 client threads). Finally, the

database reached about 1,007 ops/sec with a latency around 700 milliseconds (using 700 client

threads) on a 20-node cluster (with a data set of cardinality 500).

Figure 4.4.3.2 Number of documents processed under Join Workload on 4-, 10-, and 20-node clusters

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros

20

Click for more
NoSQL research!

engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266

To capture the true performance of this benchmark in the midst of varying cardinality, we also plotted

a separate graph (Figure 4.4.3.2) that estimates the number of documents processed (throughput ×

cardinality) per second under each benchmark. This graph clearly highlights that Couchbase

performance scaled linearly and—compared to MongoDB—its throughput grew from over 5x (on 4-

node cluster) to 18x (on a 20-node cluster), which is pretty significant.

4.4.4 Summary

Couchbase is the only solution under evaluation to support JOIN operations (provided by the query

engine) out of the box. Both Index and ANSI JOINs scaled almost linearly and demonstrated an ability

to handle increasing amounts of data at scale. The non-proportional data cardinality made the

throughput of the JOIN workload to appear flat even when the number of documents processed per

sec scaled almost linearly. This indicated that proper data cardinality is also vital when it comes to

generating data randomly for these benchmarks.

In its turn, MongoDB provides the $lookup aggregation stage, which is a LEFT OUTER JOIN

equivalent. However, the $lookup aggregation was available only for unsharded collections when

this benchmark was conducted, so this option was not evaluated. The “read parent–read

dependencies” solution performed rather poorly and appeared to be non-scalable. Thus, for JOIN

queries, there seem to be no alternatives other than Couchbase.

For more detailed comparison results, please refer to Figures A.4.1–A.4.3 in the “A.4 The Join

Workload: JOIN operations with grouping and aggregation” section of Appendix A.

5. Conclusion

Hardly any NoSQL database can perfectly fit all the requirements of any given use case. Every

solution has its advantages and disadvantages that become more or less important depending on

specific criteria to meet.

First of all, it should be noted that all the workloads were executed with the assumption that a data set

fits the available memory. With that in mind, all the reads from Data Service and Index Service for

Couchbase were from RAM and thus performed on in-memory speeds.

With the same amount of available RAM, DataStax (Cassandra) did not allow to store everything in

cache. Therefore, the majority of the reads were made from disk.

Couchbase demonstrated good performance across all the evaluated workloads and appears to be a

good choice, providing out-of-the-box functionality sufficient to handle the deployed workloads and

requiring no in-depth knowledge of the database’s architecture. Furthermore, the query engine of

Couchbase supports aggregation, filtering, and JOIN operations on large data sets without the need

to model data for each specific query. As clusters and data sets grow in size, Couchbase ensures a

satisfactory level of scalability across these operations.

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros

21

Click for more
NoSQL research!

engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266

MongoDB produced comparatively decent results on relatively small clusters. MongoDB is scalable

enough to handle increasing amounts of data and cluster extension. Under this benchmark, the one

issue we observed was that MongoDB did not support JOIN operations on sharded collections out of

the box. This way, dedicated data modeling provided a way out—however, with a negative impact on

performance.

Cassandra provided rather good performance for intensive parallel writes and reads by a partition key

and, as expected, failed on non-clustering key-read operations. In general, we proved that Cassandra

is able to show great performance for write-intensive operations and reads by a partition key. Still,

Cassandra is operations-agnostic and behaves well only if multiple conditions are satisfied. For

instance, reads are processed by a known primary key only, data is evenly distributed across multiple

cluster nodes, and, finally, there is no need for joins or aggregates.

6. About the Authors

This benchmark was performed by Altoros, a 300+ people strong consultancy that helps Global 2000

organizations with a methodology, training, technology building blocks, and end-to-end solution

development. The company turns cloud-native app development, customer analytics, blockchain, and

AI into products with a sustainable competitive advantage. Assisting enterprises on their way to digital

transformation, Altoros stands behind some of the world's largest Cloud Foundry and NoSQL

deployments. For more, please visit www.altoros.com.

To download more NoSQL guides and tutorials:

● check out our resources page

● subscribe to the blog

● or follow @altoros for daily updates

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
https://www.altoros.com/
https://www.altoros.com/research-papers.html
https://www.altoros.com/research-papers.html
https://altoros.com/blog/
https://twitter.com/altoros
https://twitter.com/altoros

22

Click for more
NoSQL research!

engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266

Appendix A

This section provides additional details for performance evaluation under the described workloads.

A.1 Workload A: The update-heavy mode

Figure A.1.1 Evaluation results under Workload A on a 4-node cluster

Figure A.1.2 Evaluation results under Workload A on a 10-node cluster

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros

23

Click for more
NoSQL research!

engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266

Figure A.1.3 Evaluation results under Workload A on a 20-node cluster

A.2 Workload E: Scanning short ranges

Figure A.2.1 Evaluation results under Workload E on a 4-node cluster

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros

24

Click for more
NoSQL research!

engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266

Figure A.2.2 Evaluation results under Workload E on a 10-node cluster

Figure A.2.3 Evaluation results under Workload E on 20-node cluster

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros

25

Click for more
NoSQL research!

engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266

A.3 The Pagination Workload: Filter with OFFSET and LIMIT

Figure A.3.1 Evaluation results under Pagination Workload on a 4-node cluster

Figure A.3.2 Evaluation results under Pagination Workload on a 10-node cluster

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros

26

Click for more
NoSQL research!

engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266

Figure A.3.3 Evaluation results under Pagination Workload on a 20-node cluster

A.4 The Join Workload: JOIN operations with grouping and aggregation

Figure A.4.1 Evaluation results under Join Workload on a 4-node cluster

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros

27

Click for more
NoSQL research!

engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266

Figure A.4.2 Evaluation results under Join Workload on a 10-node cluster

Figure A.4.3 Evaluation results under Join Workload on a 20-node cluster

Appendix B

In the comparative tables below, you will find performance results of the evaluated databases. The

results demonstrate the amount of operations per second handled by each database in different

percentiles. (A percentile is a measure that indicates the value below which a given percentage of

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
https://en.wikipedia.org/wiki/Percentage

28

Click for more
NoSQL research!

engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266

observations in a group of observations fall.) Each workload iteration was executed for 10 minutes,

aggregating statistics every second. Thus, each observation consisted of 600 measures.

Table B.1 99-, 95-, 50-, and 5-percentile for Workload A

(ops/sec)

Database

Couchbase MongoDB Cassandra

4 nodes

99 percentile 271,255 96,700 80,380

95 percentile 238,470 84,030 76,900

50 percentile 206,515 39,945 57,905

5 percentile 190,880 1,630 42,085

10 nodes

99 percentile 380,410 164,200 178,370

95 percentile 368,130 158,170 169,370

50 percentile 307,585 110,275 137,400

5 percentile 263,555 14,055 67,840

20 nodes

99 percentile 395,725 206,590 266,625

95 percentile 388,955 203,250 257,325

50 percentile 307,520 182,550 213,170

5 percentile 263,555 139,280 112,535

Table B.2 99-, 95-, 50-, and 5-percentile for Workload E

(ops/sec)

Database

Couchbase MongoDB Cassandra

4 nodes

99 percentile 14,495 15,555 2,040

95 percentile 14,035 15,200 1,790

50 percentile 12,005 14,505 1,415

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros

29

Click for more
NoSQL research!

engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266

5 percentile 10,155 13,785 1,095

10 nodes

99 percentile 27,240 15,810 5,115

95 percentile 26,745 15,175 4,675

50 percentile 23,795 14,480 4,020

5 percentile 18,975 13,750 3,400

20 nodes

99 percentile 39,620 15,445 8,335

95 percentile 37,180 14,765 7,900

50 percentile 31,985 13,830 7,210

5 percentile 26,040 12,735 6,565

Table B.3 99-, 95-, 50-, and 5-percentile for the Pagination Workload

(ops/sec)

Database

Couchbase MongoDB Cassandra

4 nodes

99 percentile 37,960 11,590 2,245

95 percentile 37,420 11,310 2,055

50 percentile 36,150 10,780 1,520

5 percentile 34,055 10,230 1,140

10 nodes

99 percentile 93,145 12,140 -

95 percentile 89,845 11,840 -

50 percentile 84,690 11,320 -

5 percentile 76,615 10,170 -

20 nodes

99 percentile 161,145 12,390 -

95 percentile 141,980 12,020 -

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros

30

Click for more
NoSQL research!

engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266

50 percentile 97,755 11,330 -

5 percentile 54,369 9,900 -

Table B.4 99-, 95-, 50-, and 5-percentile for the Join Workload

(ops/sec)

Database

Couchbase MongoDB Cassandra

4 nodes

99 percentile 1,125 225 69,570

95 percentile 1,200 205 62,735

50 percentile 1,155 175 56,790

5 percentile 1,080 150 48,365

10 nodes

99 percentile 1,755 150 195,665

95 percentile 1,620 125 185,620

50 percentile 1,070 85 161,340

5 percentile 690 55 132,495

20 nodes

99 percentile 1,360 180 285,705

95 percentile 1,239 85 278,405

50 percentile 1,000 50 253,345

5 percentile 714 25 238,280

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros

