

Performance Evaluation of NoSQL
Databases:

Couchbase Server, MongoDB, and DataStax
Enterprise (Cassandra)

 This report compares the throughput and latency of three NoSQL
databases across four workloads and three cluster configurations.

By Artsiom Yudovin, Lead Data Engineer
Uladzislau Kaminski, Senior Software Engineer
Ivan Shryma, Data Engineer
Sergey Bushik, Lead Software Engineer

Q1 2021

Table of Contents

1. Introduction 3

2. Key findings 3
2.1 Hardware configuration 3
2.2 Couchbase Server сluster сonfiguration 4
2.3 MongoDB cluster configuration 5
2.4 DataStax Enterprise(Cassandra) cluster configuration 5

3. Workloads and Tools 6
3.1 Workloads 6
3.2 Tools 7

4. YCSB Benchmark Results 8
4.1 Workload A: The update-heavy mode 8

4.1.1 Workload definition and model details 8
4.1.2 Query 8
4.1.3 Evaluation results 9
4.1.4 Summary 10

4.2 Workload E: Scanning short ranges 10
4.2.1 Workload definition and model details 10
4.2.2 Query 11
4.2.3 Evaluation results 12
4.2.4 Summary 13

4.3 Pagination Workload: Filter with OFFSET and LIMIT 13
4.3.1 Workload definition and model details 13
4.3.2 Query 14
4.3.3 Evaluation results 14
4.3.4 Summary 15

4.4 JOIN Workload: JOIN operations with grouping and aggregation 15
4.4.1 Workload definition and model details 15
4.4.2 Query 17
4.4.3 Evaluation results 17
4.4.4 Summary 18

5. Conclusion 18

6. About the Authors 20

 +1 (650) 265-2266 www.altoros.com twitter.com/altoros Schedule a demo! 2

http://www.altoros.com/
https://twitter.com/altoros
https://www.altoros.com/contact-us

1. Introduction

NoSQL encompasses a wide variety of database technologies that were developed in response
to a rise in global volumes of data and the frequency with which this data is accessed. In
contrast, relational databases were not designed to cope with the scalability and agility
challenges that modern applications face, nor were they built to take advantage of the
inexpensive storage and processing power available today. New-generation NoSQL systems
help to achieve the highest levels of performance and uptime for workloads.

This report compares the performance results of three NoSQL databases: Couchbase Server
v6.6.0, MongoDB v4.2.11 and DataStax Enterprise v6.8.3 (Cassandra). The goal of this report
is to measure the relative performance in terms of latency and throughput each database can
achieve. The evaluation was conducted on different cluster configurations—4, 10, and 20
nodes—as well as under four different workloads.

The first workload performs under an update-heavy mode—similar to a stock trading
application—invoking 50% of reads and 50% of updates. The second workload performs a
short-range scan that invokes 95% of scan and 5% of updates, where short ranges of records
are queried instead of the individual ones. This way, the second workload simulates activities
typical for an e-commerce application. The third workload represents a query with a single
filtering option to which an offset and a limit are applied. Finally, the fourth workload is a JOIN
query with grouping and ordering applied.

The Yahoo! Cloud Serving Benchmark (YCSB), an open-source specification and program
suite for evaluating retrieval and maintenance capabilities of computer programs, was used as
a default tool for evaluation consistency.

2. Key findings
2.1 Hardware configuration

Each of the NoSQL databases was deployed on 4-, 10-, and 20-node clusters in the same
geographical region. The clusters were deployed on Amazon storage-optimized extra large
instances.

 +1 (650) 265-2266 www.altoros.com twitter.com/altoros Schedule a demo! 3

https://en.wikipedia.org/wiki/YCSB
http://www.altoros.com/
https://twitter.com/altoros
https://www.altoros.com/contact-us

Table 2.1 A detailed description of the Amazon EC2 instance the clusters were deployed to

To provide verifiable results, benchmarking was performed on Amazon Elastic Compute Cloud
instances. The YCSB client was deployed to five Amazon compute-optimized large instances.

Table 2.2 A detailed description of the Amazon EC2 instance the YCSB client was deployed to

2.2 Couchbase Server сluster сonfiguration

Couchbase Server is both a JSON document and a key-value distributed NoSQL database. It
guarantees high performance with a built-in object-level cache, a SQL-like query language,
asynchronous replication, ACID transactions (as needed) and data persistence. The database
is designed to automatically scale resources, such as CPU and RAM, depending on the
workload.

For the Couchbase Server Enterprise Edition evaluation, a symmetric scale-out strategy was
used giving each node equal share of work. Regardless of cluster size (4, 10, or 20 nodes),
each node consists of Data, Index, and Query Services. Search, Analytics, and Eventing
Services were disabled, and no resources were allocated for them as the corresponding
features were not the point of interest of this benchmark. Each Data Service was allocated 60%
of available RAM (36,178 MB) within its Couchbase “Bucket” (database container). Each bucket

 +1 (650) 265-2266 www.altoros.com twitter.com/altoros Schedule a demo! 4

Family Storage-optimized

Type i3.2xlarge

vCPUs 8

Memory (GiB) 61

Instance storage (GB) 1 × 1,900 (SSD)

EBS-optimized available Yes

Network performance Up to 10 GB

Platform 64-bit

Operational System Ubuntu 18.04 LTS

Family Compute-optimized

Type c4.2xlarge

vCPUs 8

Memory (GiB) 15

EBS-optimized available Yes

Network performance High

Platform 64-bit

Operational system Ubuntu 18.04 LTS

http://www.altoros.com/
https://twitter.com/altoros
https://www.altoros.com/contact-us

had a single replica configured. The Index Service was allocated approximately 40% of
available RAM (about 24 GB) with memory-optimized indexes in use. Each index created was
replicated to all Index Services.

2.3 MongoDB cluster configuration

MongoDB is a document-oriented NoSQL database. It has extensive support for a variety of
secondary indexes and API-based ad-hoc queries, as well as strong features for manipulating
JSON documents. The database uses a separate and incremental approach to data replication
and partitioning that occur as completely independent processes.

MongoDB employs a hierarchical cluster topology that combines router processes,
configuration servers, and data shards. For each cluster size (4, 10, and 20 nodes), production
configuration has been used for deployment:

● A config server was deployed as a three-member replica set (a separate machine, not
counted in a cluster).

● Each shard was deployed as a three-member replica set (one primary, one secondary,
and one arbiter).

● Three mongos routers were deployed on each client.

Manual definition, installation, and configuration for a MongoDB sharded cluster is a fairly
complicated procedure. In short, you need to satisfy installation prerequisites, then separately
configure all the data shards, configuration servers, and sharding routers to finally combine
those components into a cluster.

MongoDB distributes data, or shards, at the collection level, sharding partitions using the
collection’s data, which is defined by a shard key. Hash-based partitioning was used for all the
models. To support hash-based sharding, MongoDB provides a hashed index type, which
indexes the hash of a field value. With hash-based partitioning, two documents with “close”
shard key values are unlikely to be part of the same chunk. This ensures a more random
distribution of a collection in the cluster.

2.4 DataStax Enterprise(Cassandra) cluster configuration

DataStax Enterprise (Cassandra) is a wide column store NoSQL database management
system designed to handle large amounts of data across many commodity servers, providing
high availability with no single point of failure.

In the table below, the changes applied to each node on 4-, 10-, 20-node clusters are detailed.

 +1 (650) 265-2266 www.altoros.com twitter.com/altoros Schedule a demo! 5

http://www.altoros.com/
https://twitter.com/altoros
https://www.altoros.com/contact-us

Table 2.4 The changes applied to each node on each cluster

Row cache was also enabled for each cluster.

3. Workloads and Tools

Database performance was defined by the speed at which the database processed basic
operations. A basic operation is an action performed by a workload executor, which drives
multiple client threads. Each thread executes a sequential series of operations by making calls
to a database interface layer both to load a database (the load phase) and to execute a
workload (the transaction phase).

The threads throttle the rate at which they generate requests, so that we may directly control
the offered load against the database. In addition, the threads measure latency and the
achieved throughput of their operations and report these measurements to the statistics
collection module.

3.1 Workloads

The performance of each database was evaluated under the following workloads:

● Workload A. Update heavily: 50% read and 50% update, request distribution is Zipfian.

 +1 (650) 265-2266 www.altoros.com twitter.com/altoros Schedule a demo! 6

cassandra.yaml

memtable_space_in_mb 16384

memtable_cleanup_threshold 0.11

memtable_flush_writers 40

row_cache_size_in_mb 20280

commitlog_total_space_in_mb 1969

cdc_total_space_in_mb 984

num_token 256

endpoint_snitch Ec2Snitch

cassandra-env.sh

MAX_HEAP_SIZE 20 GB

HEAP_NEWSIZE 1,800 MB

keyspace configuration

replication _factor 2

class SimpleStrategy

DURABILITY_WRITE false

http://www.altoros.com/
https://twitter.com/altoros
https://www.altoros.com/contact-us

● Workload E. Scan short ranges: 95% scan and 5% update, request distribution is

Uniform.
● Pagination Workload. Filter with offset and limit.
● JOIN Workload. JOIN operations with grouping and aggregation (in the case of

Couchbase, ANSI JOIN was evaluated, as well).

3.2 Tools

We used the YCSB client as a worker, which consists of the following components:

● workload executor
● the YCSB client threads
● extensions
● statistics module
● database connectors

The workloads were tested under the following conditions:

● Data fits the memory.
● Durability is false.
● Replication is set to “1” signifying that just a single replica is available for each data set.

Figure 3.1 The components of the YCSB client

 +1 (650) 265-2266 www.altoros.com twitter.com/altoros Schedule a demo! 7

http://www.altoros.com/
https://twitter.com/altoros
https://www.altoros.com/contact-us

Workloads A and E are standard workloads provided by YCSB. Default data models were used
for these workloads. Pagination Workload and JOIN Workload represent scenarios from
real-life domains: finance (server-side pagination for listing filtered transactions) and
e-commerce (series of reports on various products and services utilized by customers). To
emulate these scenarios on a domain level, a customer–order model was introduced for these
workloads.

Figure 3.2 A graphic representation of the customer–order model

4. YCSB Benchmark Results
4.1 Workload A: The update-heavy mode

4.1.1 Workload definition and model details

Workload A is an update-heavy workload, which simulates typical actions of an e-commerce
solution user—50% of read operations and 50% of updates. This is a basic key-value workload.

The scenario was executed with the following settings:

● The read/update ratio was 50%–50%.
● The Zipfian request distribution was used.
● The size of a data set was scaled in accordance with the cluster size: 50 million records

(each 1 KB in size, consisting of 10 fields and a key) on a 4-node cluster, 125 million
records on a 10-node cluster, and 200 million records on a 20-node cluster.

Couchbase Server stores data in buckets, which are the logical groups of items—key-value
pairs. vBuckets are physical partitions of the bucket data. By default, Couchbase Server
creates a number of master vBuckets per bucket (typically 1,024) to store bucket data and
evenly distribute vBuckets across all cluster nodes. Querying with document keys is the most
efficient because a query request is sent directly to a proper vBucket holding target documents.
This approach does not require any index creation and is the fastest way to retrieve a
document due to the key-value storage nature. The workload was executed without any index
creation.

DataStax Enterprise (Cassandra) cluster has been preliminary warmed up to cache the results
in memory (20 GB of RAM has been allocated for cache), which resulted in a hit rate up to
60%.

4.1.2 Query

 +1 (650) 265-2266 www.altoros.com twitter.com/altoros Schedule a demo! 8

https://github.com/brianfrankcooper/YCSB/blob/master/core/src/main/java/site/ycsb/generator/ZipfianGenerator.java
http://www.altoros.com/
https://twitter.com/altoros
https://www.altoros.com/contact-us

The following queries were used to perform Workload A.

Table 4.1.1 Evaluated queries

4.1.3 Evaluation results

Under an in-memory data set with no disk hits, Couchbase significantly outperformed both
MongoDB and Cassandra across all cluster topologies. Couchbase processed up to 105,900
ops/sec on a 4-node cluster, while Cassandra handled 97,500 ops/sec, and MongoDB only
23,700 ops/sec. On a 10-node cluster, Couchbase achieved 187,000 ops/sec, MongoDB
43,300 ops/sec, and Cassandra 142,200 ops/sec. On a 20-node cluster, it was observed that
five workload clients (with 700 threads) were not enough to saturate the Couchbase cluster any
further, therefore performance significantly improved to 330,000 ops/sec, whereas MongoDB
performance grew to only 37,300 ops/sec, and Cassandra increased to 191,300 ops/sec.

Couchbase exhibited latency consistency with 3.4 ms on a 4-node cluster with 700 calling
threads and 1.4 ms on a 20-node cluster with 3,500 threads. MongoDB scaled well with a
request processing time from 18 ms on a 4-node cluster to 14 ms on a 10-node cluster with the
same amount of calling threads. On a 20-node cluster, MongoDB latency increased to 19 ms.

The request latency spike on a 4-node cluster for MongoDB was caused by the Sharded
Cluster Balancer. The balancer is a background process that monitors the number of chunks on
each shard. When the number of chunks on a given shard reaches specific migration
thresholds, the balancer attempts to automatically migrate chunks between shards and reach
an equal number of chunks per shard. This can impact performance while the procedure takes
place. On a bigger cluster, the balancer has less impact on performance, because the data
chunks are distributed across more nodes, therefore the migration thresholds are infrequently
reached.

DataStax Enterprise (Cassandra) appeared to be scaling well with the constantly decreasing
request latency from 6.8 ms on a 4-node cluster to 4.8 ms on a 10-node cluster, and increased
to 13.3 ms on a 20-node cluster. Cassandra got a few failed operations on a 20-node cluster,
due to connection issues. It still underperformed compared to Couchbase, which exhibited 50%
better throughput and lower latency on 4- and 10-node clusters.

 +1 (650) 265-2266 www.altoros.com twitter.com/altoros Schedule a demo! 9

Couchbase N1QL MongoDB Query Cassandra CQL

bucket.get(docId,

RawJsonDocument.class)
db.ycsb.find({_id: $1})

SELECT *

FROM table

WHERE id = $1

LIMIT 1

http://www.altoros.com/
https://twitter.com/altoros
https://www.altoros.com/contact-us

Figure 4.1.3 Performance results under Workload A on 4-, 10-, and 20-node clusters

4.1.4 Summary

Couchbase exhibited much better performance at scale (up to 4x latency and 3x throughput)
than MongoDB and DataStax Enterprise (Cassandra). MongoDB reached its limit at about
500–700 threads and did not scale further. Both MongoDB and DataStax Enterprise
(Cassandra) showed consistent improvement in the overall throughput proportionally to the
cluster size growth. For larger cluster sizes, we observed that five client nodes, which we kept
consistent throughout the tests, were not enough to fully saturate 20-node clusters of
Couchbase, MongoDB, and Cassandra. Therefore, we got a marginal performance
improvement in comparison to what a cluster is typically capable of delivering.

4.2 Workload E: Scanning short ranges

4.2.1 Workload definition and model details

Workload E is a short-range scan workload in which short ranges of records are queried,
instead of individual ones. This workload simulates threaded conversations, where each scan
goes through the posts in a given thread (assuming the entries to be clustered by ID). The
scenario has been executed under the following settings.

● The read/update ratio was 95%–5%.
● The Zipfian request distribution was used.
● The size of a data set was scaled in accordance with the cluster size: 50 million records

(each 1 KB in size, consisting of 10 fields and a key) on a 4-node cluster, 100 million
records on a 10-node cluster, and 250 million records on a 20-node cluster.

● The maximum scan length reached 100 records.
● Uniform was used as a scan length distribution.

 +1 (650) 265-2266 www.altoros.com twitter.com/altoros Schedule a demo! 10

http://www.altoros.com/
https://twitter.com/altoros
https://www.altoros.com/contact-us

Given the fact that the scan operation is performed over the primary key in Couchbase, the
following primary index has been created:

CREATE PRIMARY INDEX `ycsb_primary` ON `ycsb`

USING GSI WITH {"nodes": [...]}

The primary index is simply an index of the document key on the entire bucket. The primary
index contains a full set of keys in a given keyspace. It is widely used for full bucket scans
(primary scans), when the query does not have any filters (predicates) or when no other index
or access path can be used. From the data structure point of view, the primary index is a skip
list, containing the document IDs with binary search complexity.

Due to the cluster topology where each cluster node comprises Data and Query Services,
primary indexes are scaled in accordance with cluster size and provide linear growth of
throughput proportionally to the number of nodes. If we take in mind the complexity of a binary
search by an index, when a data set grows from 50 million to 125 million records, the search
time increases by 5%. This issue is mitigated by increasing a cluster size by two times. After a
cluster doubles in size, about 90% of throughput growth is expected. This is explained by a
double growth of Query Services divided by the expected 5% slowdown of scan operation per
node.

MongoDB distributes data using a shard key. There are two types of shard keys supported by
the system: range-based and hash-based. The range-based partitioning supports more efficient
range queries. Given a range query on a shard key, a query router can easily determine which
chunks overlap this range and route the query to only those shards that contain these chunks.
However, the range-based partitioning can result in an uneven data distribution, which may
negate some of the benefits of sharding. The hash-based partitioning ensures an even
distribution of data at the expense of efficient range queries. Hashed key-value results in
random distribution of data across chunks and, therefore, shards. However, random distribution
makes it more likely that a range query on a shard key will not be able to target a few shards,
but would more likely query every shard in order to return a result. The hash-based partitioning
was used for all partitioning, so some performance degradation is expected here.

The scan operation implemented in YCSB for Cassandra is based on a token function. The
return result of a scan operation depends on the selected partition. For this benchmark, the
default Murmur3Partitioner was used. However, Murmur3Partitioner simply calculates a key
hash, but does not preserve ordering—which may result in the unexpected return of a scan
operation. Additionally, Cassandra does not support any ordering by partitionary key.

4.2.2 Query

The following queries were used to perform Workload E.

 +1 (650) 265-2266 www.altoros.com twitter.com/altoros Schedule a demo! 11

https://docs.datastax.com/en/cassandra-oss/3.0/cassandra/architecture/archPartitionerM3P.html
http://www.altoros.com/
https://twitter.com/altoros
https://www.altoros.com/contact-us

Table 4.2.1 Evaluated queries

4.2.3 Evaluation results

Couchbase demonstrated great scalability with the linear growth of throughput that was
proportional to the number of cluster nodes: from 9,625 ops/sec on a 4-node cluster to 22,580
ops/sec on a 10-node cluster. On a 20-node cluster, the throughput reached 33,095 ops/sec,
which is about 46% more than on a 10-node cluster, with the request latency decreasing from
34 ms to about 13 ms due to usage of the primary index and the replication of the Index
Service.

MongoDB had similar results from 18,255 ops/sec to 21,440 ops/sec. The results were
comparatively the same regardless of cluster and data set sizes. MongoDB performed better
than Couchbase on a 4-node cluster, but lower on 10- and 20-node clusters.

Figure 4.2.3 Performance results under Workload E on 4-, 10-, and 20-node clusters

Cassandra showed rather low performance on a scan operation: around 2,570 ops/sec on a
4-node cluster, 4,230 ops/sec on a 10-node cluster, and around 6,563 ops/sec on a 20-node
cluster. However, Cassandra was able to achieve a linear performance increase performance
across all clusters and data sets. This can be explained by the fact that coordinator nodes send
scan requests to other nodes in the cluster responsible for specific token ranges. The more
nodes a cluster has, the less data falls in the target range on each node, thus the less data
each node has to return. This resulted in reduced per-node request processing time. As the

 +1 (650) 265-2266 www.altoros.com twitter.com/altoros Schedule a demo! 12

Couchbase N1QL MongoDB Query Cassandra CQL

SELECT RAW meta().id

FROM `ycsb`

WHERE meta().id >= $1

ORDER BY meta().id

LIMIT $2

db.ycsb.find({

 _id: {

 $gte: $1

 }, {

 _id: 1
 }).sort({

 _id: 1
 }).limit($2)

SELECT id

FROM table

WHERE token(id) >=

token($1)

LIMIT $2

http://www.altoros.com/
https://twitter.com/altoros
https://www.altoros.com/contact-us

coordinator sends the requests in parallel, the overall request processing time depends on each
cluster node request latency which decreases with cluster growth. This is proven by the gradual
decrease of request latencies from 173 ms on a 4-node cluster to 104 ms on a 10-node cluster
and 63 ms on a 20-node cluster.

4.2.4 Summary

MongoDB performed better than Couchbase on relatively small-sized clusters and data sets (4
nodes and 50 million records, each 1 KB in size), but remained flat irrespective of the cluster
size. On the other hand, Couchbase outscaled and outperformed MongoDB on bigger clusters
showing linear throughput growth on 10- and 20-node clusters with data sets of 125 and 250
million records correspondingly. MongoDB showed the ability to handle the increasing amount
of data with the throughput remaining the same. Cassandra displayed greater scalability in
comparison to MongoDB and Couchbase, preserving the linear performance growth, but still
lagging behind Couchbase and MongoDB in terms of overall operation performance.

4.3 Pagination Workload: Filter with OFFSET and LIMIT

4.3.1 Workload definition and model details

Pagination Workload is a query with a single filtering option, an offset, and a limit. The workload
simulates a selection by field with pagination. The scenario was executed under the following
settings.

● The read ratio is 100%.
● The size of a data set was scaled in accordance with the cluster size: 5 million

customers (each 4 KB in size) on a 4-node cluster, 25 million customers on a 10-node
cluster, and 50 million customers on a 20-node cluster.

● The maximum of a query length reached 100 records.
● Uniform was used as a query length distribution.
● The maximum query offset reached 5 records.
● Uniform was used as a query offset distribution, as well.

The primary index of Couchbase allows it to query any field of a document; however, this type
of querying is rather slow. For the sake of fast query execution, secondary indexes are created
for specific fields by which data is filtered. Couchbase provides two index storage modes—
memory-optimized and disk-optimized (standard) ones.

Memory-optimized indexes use an in-memory database with a lock-free skip list, which has a
probabilistic ordered data structure and, thus, performs at in-memory speeds. The search is
similar to a binary search over linked lists with the O(log n) complexity. The lock-free skip list
is used to provide non-blocking reads/writes and maximize utilization of the CPU cores. On top
of a lock-free skip list, there is a multi-version manager responsible for regular snapshotting in
the background. Memory-optimized indexes reside in memory and thus require the amount of
RAM available to fit all the data inside of it. The indexes on a given node will stop processing
further mutations, if a node runs out of index RAM quota. The index maintenance is paused
until sufficient memory becomes available on the node. Since the data set was required to fit
the available memory, memory-optimized indexes fit the requirements well.

 +1 (650) 265-2266 www.altoros.com twitter.com/altoros Schedule a demo! 13

http://www.altoros.com/
https://twitter.com/altoros
https://www.altoros.com/contact-us

Memory-optimized global secondary indexes were created for filtering fields with index
replication on each cluster node.

CREATE INDEX `ycsb_address_country` ON `ycsb` (address.country)

USING GSI WITH {"nodes": [...]}

MongoDB uses mongos instances to route queries and operations to shards in a sharded
cluster. If the result of the query is not sorted, the mongos instance opens a result cursor that
“round robins” results from all cursors on the shards. If a query limits the size of the result set
using the limit() cursor method, the mongos instance passes that limit to the shards and
then reapplies the limit to the result before returning it to the client. If a query specifies a
number of records to skip using the skip() cursor method, the mongos cannot pass the
skip to the shards. Instead, the mongos retrieves unskipped results from the shards and skips
the appropriate number of documents when assembling the complete result. However, when
used in conjunction with limit(), the mongos will pass the limit plus the value of skip() to
the shards to improve the efficiency of these operations.

For better performance, an additional secondary index was added to a filtered field:

db.customer.ensureIndex({ "address.country": 1 });

Data filtering is not a typical case for Cassandra, as the database is designed to be queried by
a primary key. The data model of Cassandra should be transformed for competitive results. In
this case, this result cannot be compared with the other databases. Based on the above, it was
decided that Cassanda would not be part of this workload.

4.3.2 Query

The following queries were used to perform Pagination Workload.

Table 4.3.1 Evaluated queries

4.3.3 Evaluation results

MongoDB and Couchbase Server performed similarly on the first two cluster types. On a
4-node cluster, Couchbase reached an average 29,840 ops/sec throughput with a latency
around 8–10 ms versus 19,450 ops/sec for MongoDB. In addition to that, Couchbase had great
scalability with 61,505 ops/sec throughput on a 10-node cluster. (The throughput increased with
a cluster size growth due to the Index Service replication and load balancing.) MonogDB had
57,570 ops/sec with a latency of 10–13 ms on a 10-node cluster. For Couchbase, the use of
memory-optimized indexes resulted in pretty high performance of filter operation with offset and
limit applied. Couchbase significantly outperformed MongoDB on a 20-node cluster. On a

 +1 (650) 265-2266 www.altoros.com twitter.com/altoros Schedule a demo! 14

Couchbase N1QL MongoDB Query Cassandra CQL

SELECT RAW meta().id

FROM `ycsb`

WHERE address.country='$1'

OFFSET $2

LIMIT $3

db.customer.find({

 address.country: $1

 }, {

 _id: 1
 })

 .skip($2)

 .limit($3)

Not applicable

http://www.altoros.com/
https://twitter.com/altoros
https://www.altoros.com/contact-us

20-node cluster with a data set of 100 million records, Couchbase’s throughput reached up to
96,075 ops/sec. It is 40% more than on a 10-node cluster (keeping the workload clients to five
nodes and number of threads unchanged to 700 throughout all the tests) with a data set of 50
million. Meanwhile, MongoDB had 50,375 ops/sec with a latency of 10 ms.

Figure 4.3.2 Performance results under Pagination Workload on 4-, 10-, and 20-node clusters

4.3.4 Summary

Couchbase exhibits twice the throughput and relatively low latencies for filter operation
compared to MongoDB in the largest cluster. MongoDB remained flat with its performance even
when the cluster size scaled. Meanwhile, Couchbase scaled linearly due to memory-optimized
indexes and an out-of-the-box load balancing and scaling of Query and Index Services.

4.4 JOIN Workload: JOIN operations with grouping and aggregation

4.4.1 Workload definition and model details

JOIN Workload is a JOIN query with grouping and ordering applied. The workload simulates a
selection of complex child-parent relationships with categorization employed. The scenario was
executed under the following settings.

● The read ratio was 100%.
● The size of a data set was scaled in accordance with the cluster size: 5 million

customers and 5 million orders (each 4.5 KB in size) on a 4-node cluster, 25 million
customers and 25 million orders on a 10-node cluster, and 50 million customers and 50
million orders on a 20-node cluster.

● The maximum of a query length reached 100 records.

 +1 (650) 265-2266 www.altoros.com twitter.com/altoros Schedule a demo! 15

http://www.altoros.com/
https://twitter.com/altoros
https://www.altoros.com/contact-us

● Uniform was used as a query length distribution.
● The maximum of a query offset reached 5 records.
● Uniform was used as a query offset distribution, as well.

There are different types of JOIN operations available in the N1QL query engine in Couchbase
out of the box:

● Index JOIN is used when one side of JOIN has to be document key(s) employing the
ON KEYS statement.

● ANSI JOIN is applicable to arbitrary expressions on any field in a document, standard
JOIN statement, with a nested loop under the hood. N1QL supports the standard
INNER, LEFT OUTER, RIGHT OUTER JOINs.

● ANSI HASH JOIN creates an in-memory hash table for one side of the JOIN operation
(usually, the smaller one) used by the other side to find matches. It can be a
performance optimization under suitable conditions.

Only the first two types—Index JOIN and ANSI JOIN—were evaluated during this
benchmark. In addition to that, a dedicated covering index was used as it contained all the
fields required by the query. This way, a query engine skips the whole document retrieval from
data nodes after the index selection is made. Therefore, the query execution plan only consists
of the index’s resolution without a time-consuming document retrieval over the network, which
results in a significant query performance boost.

The following covering index has been created:

CREATE INDEX `ycsb__address_month_orders_price` ON `ycsb`

(address.zip, month, order_list, sale_price)

USING GSI WITH {"nodes": [...]}

MongoDB ensures the $lookup aggregation out of the box to apply a left outer JOIN over an
unsharded collection in the same database. It helps to filter document keys from the “joined”
collection for further processing. Unfortunately, MongoDB v3.6 did not support the $lookup
aggregation on sharded collections when the evaluation was carried out. So, in order to
evaluate the JOIN Workload, an alternative solution was employed. The one way to work with
multiple JOIN operations on a non-relational database is to denormalize a data model, embed
the elements into the parent objects, and perform a regular query. Still, this approach invokes
additional redundancy and extra storage costs, as well as impacts the read/write performance.

Another way is to model the dedicated “joining table” and query its elements by a partition key,
which generally becomes identical to read by key. This approach leads to data duplication and
an increase in write complexity through the necessity to support consistency between models,
which also causes a significant write-performance downgrade. Furthermore, the approach
brings along additional storage costs. The same specific data modeling approach can be
applied to all the databases under evaluation, but it drives to dramatically varying results. This
is the reason why we were considering a similar business case with two different models
available: customers and orders. In this case, the JOIN operation was a simple two-phase read
with filtering, which had a significant impact on the overall JOIN operation performance.

Cassandra also does not have an out-of-the-box JOIN operation support. The alternative
solutions provided for MongoDB are applicable to Cassandra, as well. However, the two-phase
read approach does not fit the Cassandra paradigm and appears to be non-scalable and
non-performant, as it requires the usage of secondary indexes and, therefore, does not work on

 +1 (650) 265-2266 www.altoros.com twitter.com/altoros Schedule a demo! 16

http://www.altoros.com/
https://twitter.com/altoros
https://www.altoros.com/contact-us

large data sets. For this reason, the second approach—with modeling an extra joining
table—was evaluated keeping in mind all the drawbacks and side effects it brings.

As it resulted in querying by a partitioning key with the SUM aggregation and the corresponding
read performance, the approach was excluded from the further comparison, because we were
not evaluating the partition-key reads only. In terms of the read data, the performance under the
dedicated joining table approach reached about 59,000 ops/sec on a 4-node cluster, about
159,000 ops/sec on a 10-node cluster, and up to 253,000 ops/sec on a 20-node cluster.

4.4.2 Query

The following queries were used to perform the JOIN Workload.

Table 4.4.1 Evaluated queries

4.4.3 Evaluation results

Couchbase indexes and ANSI JOIN operations showed consistent performance on all cluster
topologies as the number of documents scaled and the cardinality grew from 100 to 500
qualified documents per query. In general, Couchbase significantly outperformed MongoDB
regardless of data set and cluster sizes thanks to different types of JOIN operations available
out of the box. Couchbase was able to execute around 1,850 ops/sec on a 4-node cluster (with
a data set of cardinality 100) at an average request latency of about 100 ms (using 700 client
threads). On a 10-node cluster (with a data set of cardinality 250), Couchbase performed at
around 250 ops/sec at an average request latency of 3,000 ms (using 700 client threads).
Finally, the database reached about 995 ops/sec with a latency around 500 ms (using 700
client threads) on a 20-node cluster (with a data set of cardinality 500).

 +1 (650) 265-2266 www.altoros.com twitter.com/altoros Schedule a demo! 17

Couchbase N1QL MongoDB Query Cassandra CQL

SELECT o2.month,

c2.address.zip,

SUM(o2.sale_price)

FROM `ycsb` c2

INNER JOIN `ycsb` o2

ON (META(o2).id IN

c2.order_list)

WHERE c2.address.zip = $1

AND o2.month = $2

GROUP BY o2.month,

c2.address.zip

ORDER BY

SUM(o2.sale_price)

$r1 = db.customer.find({

 address.zip: $1

 }, {

 address.zip: 1,

 order_list: 1

 })

$r2 = db.order.aggregate([

{

 $match: {

 $and: [{

 _id: {

 $in: $r1.order_list

 }

 }, {

 month: $2

 }]

}}, {

 $group: {

 _id: null,

 sum: {

 $sum: “$sale_price”

 }}}])

Not applicable

http://www.altoros.com/
https://twitter.com/altoros
https://www.altoros.com/contact-us

MongoDB demonstrated modest results in comparison to Couchbase Server. The 4-node
cluster had 145 ops/sec with 10,000 ms latency, the 10-node cluster—65 ops/sec with 9,000
ms, and the 20-node cluster—45 ops/sec with 15,000 ms.

Figure 4.4.3.1 Performance results under JOIN Workload on 4-, 10-, and 20-node clusters

4.4.4 Summary

Couchbase is the only system under evaluation to support JOIN operations (provided by the
query engine) out of the box. Both Index JOIN and ANSI JOIN scaled almost linearly and
demonstrated an ability to handle increasing amounts of data at scale. The disproportional data
cardinality made the throughput of JOIN Workload appear flat even when the number of
documents processed per second scaled almost linearly. This indicated that proper data
cardinality is also vital when it comes to generating data randomly for these benchmarks.

MongoDB provides the $lookup aggregation stage, which is a LEFT OUTER JOIN equivalent.
However, the $lookup aggregation was available only for unsharded collections when this
benchmark was conducted, so this option was not evaluated. The “read parent–read
dependencies” solution performed rather poorly and appeared to be non-scalable. Thus, for
JOIN queries there seem to be no alternatives other than Couchbase.

5. Conclusion

No single NoSQL database can perfectly fit all the requirements of any given use case. Every
system has its advantages and disadvantages that become more or less important depending
on the specific criteria to meet.

 +1 (650) 265-2266 www.altoros.com twitter.com/altoros Schedule a demo! 18

http://www.altoros.com/
https://twitter.com/altoros
https://www.altoros.com/contact-us

First of all, it should be noted that all the workloads were executed with the assumption of the
data set fitting the available memory. Taking this into account, all the reads from Data and
Index Services for Couchbase were from RAM, thus, performed at in-memory speeds.

With the same amount of available RAM, DataStax Enterprise (Cassandra) did not allow storing
everything in cache. Therefore, the majority of the reads were made from disk.

Couchbase showed good performance across all the evaluated workloads, providing
functionality sufficient to handle the deployed workloads out of the box and requiring no
in-depth knowledge of the database’s architecture. Furthermore, the query engine of
Couchbase supports aggregation, filtering, and JOIN operations on large data sets without the
need to model data for each specific query. As clusters and data sets grow in size, Couchbase
ensures a satisfactory level of scalability across these operations.

MongoDB produced comparatively decent results on relatively small clusters. MongoDB is
scalable enough to handle increasing amounts of data and cluster extension. Under this
benchmark, the only major issue we observed was that MongoDB did not support JOIN
operations on sharded collections. Nevertheless, dedicated data modeling provided an
alternate solution, though, with a negative impact on performance.

DataStax Enterprise (Cassandra) demonstrated good performance for intensive parallel writes
and reads by a partition key and, as expected, failed on non-clustering key-read operations. In
general, we proved that Cassandra is able to show great performance for write-intensive
operations and reads by a partition key. Still, Cassandra is operations-agnostic and behaves
well only if multiple conditions are satisfied. For instance, reads are processed by a known
primary key only, data is evenly distributed across multiple cluster nodes, and finally there is no
need for JOIN operations or aggregates.

 +1 (650) 265-2266 www.altoros.com twitter.com/altoros Schedule a demo! 19

http://www.altoros.com/
https://twitter.com/altoros
https://www.altoros.com/contact-us

6. About the Authors

Uladzislau Kaminski is a Senior Software Engineer
and Cloud-Native Development Consultant.

His primary skills are software architecture and system design.
He took part in numerous projects dealing with processing and
distributing huge amounts of data arrays. Uladzislau has a durable
background in building systems from scratch and adapting existing
solutions, as well as designing, analyzing, and testing them.

Artsiom Yudovin is a Tech Lead of Data Engineers.

He has a solid software development background. He is focused on
maintaining, designing, customizing, upgrading, and implementing
complex software architectures, including data-intensive and
distributed systems. Artsiom dedicates much of his spare time to
these activities, and now he is one of the contributors to well-known
open-source projects.

Ivan Shyrma is a Data Engineer.

He has extensive hands-on experience in high-load, scalable
applications and web services development. Ivan has worked as a
full-stack engineer for several years designing durable distributed
systems. He is able to create complex architecture solutions, adopt
systems for production use, and is keen on resolving any
engineering problems.

Sergey Bushik is a Lead Software Engineer.

He has extensive experience in multilayered application
architecture and high-level design. Sergey is an expert in relational
databases with experience in J2EE technologies and Java
frameworks. He also has a background working with NoSQL and
NewSQL storage systems, as well as with stream processing
frameworks.

 +1 (650) 265-2266 www.altoros.com twitter.com/altoros Schedule a demo! 20

http://www.altoros.com/
https://twitter.com/altoros
https://www.altoros.com/contact-us

Altoros is a 300+ people strong consultancy that helps Global 2000 organizations with
a methodology, training, technology building blocks, and end-to-end solution development.
The company turns cloud-native app development, customer analytics, blockchain, and AI
into products with a sustainable competitive advantage. For more, please visit
www.altoros.com.

To download other research papers and articles like that:

● check out our resources page
● subscribe to the blog
● or follow @altoros for daily updates

Feel free to contact us if you’d like to discuss your project.

 +1 (650) 265-2266 www.altoros.com twitter.com/altoros Schedule a demo! 21

http://www.altoros.com/
https://www.altoros.com/resources
https://www.altoros.com/blog
https://twitter.com/Altoros
https://www.altoros.com/contact-us
http://www.altoros.com/
https://twitter.com/altoros
https://www.altoros.com/contact-us

