
DEVELOPER GUIDE

Build World-Class
Web Apps Using

Node.js and
Couchbase

Eric Bishard, Developer Advocate

Contents
Introduction #

Why Couchbase? #

Conclusion #

Using Node.js with Couchbase
Node.js SDK
Node Ottoman ODM
RAGE Stack with Couchbase

#
	 #
	 #
	 #

Example Projects Using Couchbase & Node.js	
User Profile & Session Stores

Step 1: Create the API with Node and Express
Step 2: Saving a New User to the Profile Store
Step 3: An Endpoint for Account Creation
Step 4: Using Session Tokens for Sensitive Data
Step 5: Managing a User Session with Tokens
Final Thoughts

Other Example Projects

#
		 #
	 #
	 #
	 #

#
	 #

#
	 #

As a Node.js developer, the last thing

you want to have to worry about is your

application database. After all, there are

more important issues demanding your

time and attention.

Fortunately, NoSQL databases such

as Couchbase are a natural fit for

JavaScript applications because of

their native use of JSON documents.

With JavaScript from front-end to

backend, development is integrated,

leaving you free to tackle more

interesting challenges.

If you’re looking to build a world-class

web app using Node.js, then Couchbase

is the perfect fit for your backend

database. The Couchbase ecosystem

offers a premium set of tools and the

perfect IDE for Node.js developers, so

the only limit to what you can build is

your imagination.

In this Developer Guide, we’ll take a

closer look at how to develop high-

performing web apps using Node.js

and Couchbase. Let’s get started.

DEVELOPER GUIDE 1

Introduction

DEVELOPER GUIDE 1

Couchbase is a distributed JSON document database with

all the capabilities of a key-value store, a search engine and

an RDBMS, including SQL, distributed ACID transactions

and more.

On one end, Couchbase is built for microservices and

serverless consumption-based computing in the cloud;

on the other end, it’s designed for edge computing on

occasionally and locally connected mobile/IoT devices.

Bottom line: Couchbase is perfect for multicloud

deployments.

Because Couchbase manages JSON documents, it

eliminates the need for a hard-coded schema in the

database, although Couchbase does include logical

structure to make organizing those documents as intuitive

as old-school schema. The application object definition,

available within JSON, is the editable schema you get to

control as a developer.

You only write the JSON into the database once and then

you can apply multiple data processing capabilities on it,

including:

•	 Full SQL programmability including ACID
transactions

•	 In-memory caching processing speeds

•	 Key-value store capabilities

•	 Full-text search (information retrieval)

•	 Data analytics (ad-hoc querying)

•	 Event-driven (reactive) programming and
change data capture

As a result, Couchbase serves as a reliable

system of record, while concurrently handling

key-value operations of microsecond latency, SQL

queries and text searches in milliseconds, and ad-hoc

analytical queries spanning tens of seconds, without

any query impeding another.

Traditional databases simply don’t offer these capabilities

out of the box.

When you use Couchbase, you reduce data and database

sprawl, improve security, decrease administration and lower

overall cost. But most importantly, Couchbase enables you

to build apps quickly and deploy them at scale.

New to Couchbase? Start with our developer docs

Or, try out Couchbase Cloud for free when you

sign up today.

Why Couchbase?

DEVELOPER GUIDE 1

There are three main ways to use Node.js with

Couchbase Server:

•	 The Node.js SDK

•	 The Node Ottoman Object Data Modeler (ODM)

•	 The RAGE Stack with Couchbase

Let’s take a closer look at each one.

Node.js SDK
The Couchbase Node.js SDK is the default choice for

JavaScript developers building applications with Node.js.

The SDK 3.x version is a complete rewrite of the 2.x API,

providing a simpler surface area and adding support

for future Couchbase Server features like Collections

and Scopes.

The 3.x SDK also brings in promises to reduce the

complexity of asynchronous JavaScript in client

applications, as well as extending the management APIs

and bringing better debugging and logging options for

the developer.

For more information on how to use the Node.js SDK, read

Install and Start Using the Node.js SDK with Couchbase

Server or visit our Node.js Developer Portal.

Node Ottoman ODM
Ottoman is an Object Data Modeler (ODM) for Couchbase’s

Node.js SDK providing JSON schema and validation for

NoSQL. It is designed to eliminate most boilerplate code

necessary to build Node.js apps with Couchbase so you can

build systems that are easy to design, maintain and scale.

With Ottoman, you declare schema in your code.

Although Couchbase has no schema enforcement for your

documents, most applications need some level of schema

even in NoSQL.

Although Ottoman creates an abstraction over the

Couchbase SDK, the benefits outweigh the drawbacks.

A developer creates a lot of logic around creating and

updating documents, writing pre- and post-lifecycle,

working with data structures and validation.

For more information on how to use the Ottoman ODM

with Couchbase, read our Developer Quick Start Guide for

Ottoman or take a high-level tour of Ottoman in this

blog post.

RAGE Stack with Couchbase
You also have the option of using the RAGE stack —

React, Apollo Client, GraphQL and Express — alongside

Couchbase Server for full-stack JavaScript application

development.

You can use React, Apollo and GraphQL on the client side,

and Express and Express GraphQL on the server side. The

Express application also uses the Couchbase Node.js SDK,

allowing you to connect to your Couchbase database, make

queries, and return data to the API.

For a walkthrough demonstration of full-stack development

with RAGE and Couchbase, watch this on-demand

Couchbase Connect presentation (with its accompanying

code repo).

Using Node.js with Couchbase

DEVELOPER GUIDE 1

Now that you’re familiar with how to use Node.js and Couchbase together, it’s time to dive into some example use cases

and projects.

The most popular use case of Couchbase and Node.js for user profiles and session stores.

User Profile & Session Stores
One of the most common use cases for a NoSQL database is to create a user profile and session store. Why NoSQL

specifically? Because profiles often need to be flexible and accept data changes frequently. While changes are possible with a

traditional RDBMS, regular changes with a relational database require more work and impose larger performance penalties.

So, how do you create a user profile using Node.js and Couchbase Server? Here’s a high-level look. For a detailed walkthrough,

please consult this video: Develop a User Profile and Session Store with Node.js.

When it comes to managing user data, you need a way to create a user profile store and session store and then associate other

JSON documents with them. Here are some important principles to remember when creating a user profile store:

•	 Store account data like usernames and passwords in a profile document.

•	 Pass sensitive user data with each user action request.

•	 Use a session that expires after a set amount of time.

•	 Store session documents with an expiry limit.

Video blog post: Develop a User Profile Store and Session Store with Node.js - Video

Old blog post: Create a User Profile Store with Node.js and a NoSQL Database

Example Projects Using Couchbase & Node.js

DEVELOPER GUIDE 1

STEP #1 CREATE THE API WITH NODE
AND EXPRESS
First, create a project directory for your Node.js app and

install any dependencies.

This creates a working directory for your project and

initializes a new Node project. Your dependencies include

the Node.js SDK for Couchbase and Express Framework

and other utility libraries like body-parser to accept

JSON data via POST requests, uuid for generating

unique keys and bcryptjs to hash your passwords

to deter malicious users.

Next, bootstrap your application with a server.js file. You

also need to create an index in Couchbase Server because

you’ll be using the N1QL query language for one of your

endpoints. Primary indexes are not recommended fo

production-level code.

STEP #2 SAVING A NEW USER TO THE
PROFILE STORE
A user profile contains any information describing a user,

such as address, phone number, social media profiles, and

more. It’s never a good idea to store account credentials in

the same document as a user’s basic profile information.

You’ll need a minimum of two documents for every user, so

let’s take a look at how you can structure those documents.

Your user profile document should have a key that you will

use to refer to in related documents. Most often, this key is

an auto-generated UUID.

Your Profile document will have a JSON value that

includes two properties: email and a type property. The

type property is an important indicator that describes

our document similar to how a table organizes records in

a relational database. This is a standard convention in a

document database.

The account document associated with your user profile

will have a key that is equal to a given user’s email address.

Your account document should also have a type, as well as

a pid referring to the key of your profile document along

with an email address and hashed password.

Now you have an established model for each document

and a strategy for relating those documents without

having created any database constraints.

STEP #3 AN ENDPOINT FOR
ACCOUNT CREATION
The next step is to create an endpoint for account creation

to your server.js file. Make sure all of the following items

are included.

First, double-check that both an email and password exist

in the request.

Next, your endpoint should create an account object and

a profile object based on the data that was sent in the

request. The pid that you’re saving into the account object

should be a unique key and should be set as the document

key for your profile object.

DEVELOPER GUIDE 1

The account document should use the email as its key. In

the future, if other account details are needed (like alternate

email, social login, etc.) you can associate other documents

to the same profile.

Rather than saving the password in the account object as

plain text, you should hash it using Bcrypt. The password

should be stripped from the profile object for security.

(For more information on password hashing, check out

this tutorial.)

With the data ready, it’s time to insert it into Couchbase.

The goal of this save should be all or nothing. You want

both the account and profile documents to both be created

successfully or else the entire save should be rolled back.

Depending on the success of the save, you’ll return some

information to the client.

You also could have used N1QL queries for inserting the

data, but it’s easier to use CRUD operations with no penalty

on performance.

STEP #4 USING SESSION TOKENS FOR
SENSITIVE DATA
With the user profile and account created, you want the

user to sign in and establish a session that will be stored

in the database referencing their user profile. This session

document should be set to eventually expire and be

removed from the database.

The session data model, like the other documents, should

have a different type. Just like with the account document,

it should have a pid property that references the target

user profile.

The code that makes this possible should be in your

login endpoint.

This endpoint should validate the incoming data and

then execute an account lookup by email address. If data

comes back for the email, you can compare the incoming

password with the hashed password returned in the

account lookup. Provided this succeeds, your

endpoint creates a new session for the user.

Unlike the previous insert operation, you should set a

document expiration of an hour (3600 s). If the expiration

isn’t refreshed, the document should be set to disappear.

This is good because it forces the user to sign in again and

create a new session. This session token is then passed with

every future request instead of the password.

STEP 5: MANAGING A USER SESSION
WITH TOKENS
Eventually, you’ll want to get information about a user’s

profile as well as associate new information with the profile.

For this, you should confirm authority through the session.

You can confirm the session is valid using middleware. A

Middleware function can be added to any Express endpoint.

This validation should be a simple function that has access

to your endpoint’s HTTP request.

Your code should check the request for an authorization

header. If you have a valid bearer token with a session id

(sid), you can do a lookup. Your session document should

have the profile id in it. If the session lookup is successful,

save the profile id (pid) in the request.

Next, you’ll need to refresh the session expiration and move

through the middleware and back to the endpoint. If the

session doesn’t exist, no profile id will be passed and the

request will fail.

After that, you can use your middleware to get information

about the profile in your account endpoint. Note: the

validation should happen before the rest of the request.

DEVELOPER GUIDE 1

FINAL THOUGHTS
Those are the high-level steps to create a user profile and

session store using Node.js and Couchbase.

Again, for a detailed walkthrough, please consult this video:

Develop a User Profile and Session Store with Node.js.

And for more advanced reading material, please consult

this article: User Profile Store: Advanced Data Modeling

Part 1. All code mentioned in the above articles can be

found in the couchbaselabs / couchbase-nodejs-blog-api

repo on GitHub.

While user profile and session stores are the most popular

use case, Couchbase and Node.js can also be used for a

variety of other apps and projects, including:

•	 Full-text search functionality (whether standalone or

part of a bigger project)

•	 Chatbot applications

•	 Points-of-interest and travel apps

•	 Bitcoin and other cryptocurrency applications

•	 Analytics on massive datasets

Other Example Projects

About Couchbase

At Couchbase, we believe data is at the heart of the enterprise. We empower developers and architects to build, deploy, and

run their mission-critical applications. Couchbase delivers a high-performance, flexible and scalable modern database that runs

across the data center and any cloud. Many of the world’s largest enterprises rely on Couchbase to power the core applications

their businesses depend on.

For more information, visit www.couchbase.com.

© 2021 Couchbase. All rights reserved.

3250 Olcott Street | Santa Clara, California 95054 | 1-650-417-7500 | www.couchbase.com

You shouldn’t have to think twice about which database to use for your next Node.js app. As a NoSQL document database,

Couchbase is a perfect fit. In this Developer Guide, you learned:

• Why Couchbase is a natural choice when building with Node.js

• How to use Node.js alongside Couchbase, including the SDK, Ottoman ODM and RAGE stack

• What common projects use both Node.js and Couchbase to tackle today’s development challenges

• For more information on how to use Node.js with Couchbase, check out our portal for Node.js developers.

Now, when it’s time to build a new web app, your possibilities are endless. The only question is: What will you build?

Conclusion

