
Couchbase vs. MongoDB™ for Query

Introduction

Couchbase is a distributed NoSQL document-oriented database with a core architecture that supports a flexible data
model, easy scalability, consistent high-performance, always-on 24x365 characteristics, and advanced security. It has
been adopted across multiple industries and in the largest enterprises for their most business-critical applications.
Many of those customers, including: Equifax, Nuance, and Staples, have gone through rigorous evaluations of Couchbase
alongside MongoDB, and have chosen Couchbase based on a strong set of differentiated capabilities and architectural
advantages, including:

• Scale-Out and High Availability

• Global Deployment

• SQL/SQL++ Query for JSON

• Hybrid Operational and Analytical Processing

• Full-Text Search

• Server-Side Eventing and Functions

• Embedded Mobile Database

In this paper, we will focus on how MongoDB compares to Couchbase when it comes to query. Couchbase offers

a declarative query language (N1QL) based on open standards, providing users with the familiarity of SQL and

the flexibility of JSON and nested data structures.

MongoDB’s Proprietary Query API and Aggregation Framework

MongoDB provides a query method, find(), to query a collection with simple filtering and projection. For more
complex operations, users have to use the aggregation framework to join, process, and aggregate multiple
documents to return the result.

The MongoDB query method and aggregation framework are proprietary and procedural, with limited

expressive power and poor performance.

• Proprietary. MongoDB’s query method and aggregation framework is non-standard, and for developers

with RDBMS experience, it is a huge learning curve, leading to a longer development cycle and

complexity in maintaining the applications.

• Procedural. Eliot Horowitz, MongoDB CTO, said: “MongoDB aggregation is similar to Unix pipeline. The

output of one stage goes into another….[it’s] very procedural. Lets you think about in a very procedural

way.” The problem with this approach is that the burden to optimize a query is now on the developers,

and a pipeline optimized for certain data distribution may not work if the data changes, and requires

manual intervention again to optimize it. So this adds to the complexity of application development and

ongoing maintenance.

• Complexity. MongoDB’s aggregation framework is complex even for simple queries that you can easily

express in SQL. For example, use http://www.querymongo.com/ to translate your favorite SQL statements

into MongoDB’s proprietary syntax to see the complexity of MongoDB’s aggregation framework.

1

http://www.querymongo.com/

• Limited Expressive Power. MongoDB’s proprietary query method and aggregation framework has many

limitations because, unlike N1QL, it is not based on proven tuple calculus. For example, it has limited

support for JOINs and cannot join across sharded collections. See the blog comparing JOIN support in

Couchbase and MongoDB.

• Limited Query Optimization. Because the aggregation pipeline is procedural and lacks expressive

power, applications need to compensate by doing complex data processing on the client side, leading

to complexity and poor performance. See the YCSB-JSON benchmark comparing the performance and

scalability of queries between Couchbase and MongoDB.

• Local Indexes. MongoDB documentation states the limitation of having local indexes that share the same

shard key as the local data as follows: “If a query does not include the shard key, the mongos must direct

the query to all shards in the cluster. These scatter gather queries can be inefficient. On larger clusters,

scatter gather queries are unfeasible for routine operations.” Furthermore, indexes are maintained

synchronously and as more indexes are added, writes slow down further and further.

N1QL: Flexibility of JSON + Expressive Power of SQL

Unlike MongoDB, Couchbase adopts open standards and extends SQL to support JSON. Couchbase Server

stores JSON documents and supports a query language called N1QL. The name N1QL suggests “not first normal

form,” a reference to the fact that JSON documents, unlike relational data, may contain nested data structures.

In fact, N1QL is the first commercial implementation of SQL++, a query language for semi-structured data based

on the JSON data format that was developed by Prof. Yannis Papakonstantinou and others at University of

California, San Diego1. Like its predecessor, SQL++ extends the mathematical foundation of tuple calculus to

support the richness of JSON, making it a highly expressive query language that encompasses both SQL and the

JSON data model. Don Chamberlin, co-inventor of SQL, wrote an excellent tutorial on SQL++ using N1QL for the

query examples. We expect other vendors to support SQL++ and we believe it will become the de-facto query

language for NoSQL systems.

Here are the key benefits of N1QL over the proprietary MongoDB query method and aggregate framework:

• Familiarity of SQL. SQL was designed as a query language that business users can understand and

express. N1QL extends SQL to support JSON, and therefore developers find N1QL familiar and easy

to learn. See the table below that shows the similarity between N1QL and Oracle SQL. Expressing the

same query in MongoDB requires a developer to write code using MongoDB’s proprietary and complex

query API and aggregation framework. See below for examples of N1QL’s simplicity vs the complexity of

MongoDB’s proprietary API.

• Declarative. N1QL is declarative. You express what you want to accomplish and the database system

will figure out the most optimal way of accessing and processing the data to get the results. Couchbase

builds on decades of advances in database research in query optimization and execution to deliver high

performance at scale.

• Expressive Power. Because of the strong mathematical foundation, N1QL is a highly composable and

expressive query language. Each query uses JSON documents as its input, and the output is another

JSON document. N1QL is not constrained by how data is stored physically.

• Global Indexes. Couchbase supports Global Indexes that can be partitioned differently from the

underlying data to optimize different queries for higher query throughput and lower latencies. Each

index can be replicated multiple times for high availability and replicas are automatically load balanced.

Each index can also be partitioned depending on the expected size and range scan needs. Couchbase

can support as many indexes as needed to improve query performance without impacting write latency.

This also means that the data model does not need to be changed for different query access patterns as

multiple different indexes can align the data in different ways.

• Tunable Consistency. Global indexes are updated asynchronously to the data mutations which is why

write throughput is not impacted by more and more indexes being added. They are constantly updated

with an advanced memory-memory database change protocol. Each query can then be made strongly

2 1 https://arxiv.org/abs/1405.3631

https://blog.couchbase.com/joining-json-comparing-couchbase-n1ql-mongodb/
https://www.couchbase.com/benchmarks
https://docs.mongodb.com/manual/core/distributed-queries/
https://docs.mongodb.com/manual/reference/program/mongos/#bin.mongos
https://resources.couchbase.com/sql_tutorial
https://docs.google.com/document/d/1RdFOQmFceXrgsq9F5e0G2dGE86Lvr4nVNZO543uZr5w/edit?disco=uiAAAAB0toE70&ts=5baa5b4c#heading=h.3pyp7oudcrwt
https://docs.google.com/document/d/1RdFOQmFceXrgsq9F5e0G2dGE86Lvr4nVNZO543uZr5w/edit?disco=uiAAAAB0toE70&ts=5baa5b4c#heading=h.24zqypf0fdpf
https://docs.google.com/document/d/1RdFOQmFceXrgsq9F5e0G2dGE86Lvr4nVNZO543uZr5w/edit?disco=uiAAAAB0toE70&ts=5baa5b4c#heading=h.24zqypf0fdpf
https://arxiv.org/abs/1405.3631

consistent on a per-query basis which allows the application developer, who has context on what is most

important in given parts of the application, to decide what the right priority is between consistency and

latency without affecting the resources of the rest of the platform.

Simplicity of N1QL vs Complexity of MongoDB’s Proprietary Query API

Here is an example of a query that finds all the destination airports starting from SFO. Even for a simple JOIN,

it requires a cumbersome pipeline syntax on the MongoDB query. You need another “let” stage to create the

local variables for airport attributes to differentiate between the two collections. You also need an additional

$match clause to eliminate non-matching (empty) airline docs, followed by grouping and sorting. As you can

see visually, the MongoDB query is longer and much more complex to do the same job as Couchbase N1QL.

N1QL queries look the same as the ANSI SQL you are familiar with, while the MongoDB API becomes intractably

complex with fairly simple queries. See this blog for a detailed comparison between JOIN support in Couchbase

and MongoDB.

Couchbase N1QL

MongoDB:

3

https://blog.couchbase.com/joining-json-comparing-couchbase-n1ql-mongodb/

Performance Comparison: Couchbase vs. MongoDB

Applications using N1QL are easier to write and maintain because of the expressive power and familiarity of

N1QL to developers. The system also scales better because it will automatically pick the optimal execution path.

The database should automatically optimize and select the optimal execution plan to get the results, instead

of application developers spending time figuring out how to lay out and manually optimize the aggregation

pipeline as required in MongoDB. See this blog for a deep dive into the N1QL query optimization.

Because of the lack of a good optimizer and limitation in the aggregation pipeline, MongoDB performs poorly

even for simple JOIN queries involving sharded partitions. As you can see from one of the tests in the YCSB-

JSON benchmark, Couchbase is 6x to 18x higher in throughput than MongoDB because MongoDB has to ship

the data to the client and process the JOINs in the application. Transferring large amounts of data between the

server and client is inefficient and impacts the overall system throughput by saturating the network.

Join Workload: JOIN with GROUP BY and ORDER BY

Nodes xRecords

6000
00

4000
00

2000
00

0

T
h

ro
u

g
h

p
u

t
(d

o
c
u

m
e

n
ts

 P
ro

c
e

ss
e

d
/s

e
c
)

4-nodes x 10M + 10M records
(cardinality 100)

118000

17500

10-nodes x 25M + 25M records
(cardinality 250)

23500

279250

20-nodes x 50M + 50M records
(cardinality 500)

27500

503500

Couchbase

MongoDB

Here is a simple example from the YCSB-JSON benchmark for a pagination query that skips the first 1000

documents (OFFSET 1000) and returns the next 10 documents (LIMIT 10):

 SELECT * from YCSB
 WHERE address.country = "USA"
 ORDER BY address.zip
 OFFSET 1000 LIMIT 10

For MongoDB, this query will require each of the shards to sort and return 1010 documents to the query

coordinator, which then has to aggregate the documents from all shards, re-sort the documents, and then skip

the first 1000 documents to return the final 10 documents to the application. This scatter-gather approach with local

indexes results in processing by all shards (scatter), and returning of data from all shards to the query coordinator

(gather), and then further processing by the query coordinator to finalize the results to the application.

4

https://dzone.com/articles/a-deep-dive-into-couchbase-n1ql-query-optimization
https://www.couchbase.com/benchmarks
https://www.couchbase.com/benchmarks

1. The mongos coordinator accepts the query from
the application and distributes the query to all the shards

2. Each shard processes the query and sorts the data locally

3. Each shard then returns the first 1010 documents
(OFFSET 1000, LIMIT 10) to the mongos query coordinator

4. The mongos query coordinator aggregates the
documents returned from all the shards, re-sorts, and
re-orders the documents

5. The mongos query coordinator then skips the first 1000
documents (OFFSET 1000), and returns the 10 documents
(LIMIT 10) to the application

Read

Results

Driver

mongos

Shard A
Collection l (shard key x)

Shard B Shard C

Contrast this with the efficient query processing of Couchbase using global indexes. The query service

simply pushes down the request to the index service to filter and skip the first 1000 documents, and return

the keys to the next 10 documents. It then fetches the 10 documents from the data service and returns the

documents to the application. This is an order of magnitude more efficient then MongoDB as shown in the

YCSB-JSON benchmark.

1. Client submits the query to the Query Service

2. The Query Service parses and optimizes the
query, and sends the scan request to the right index

3. The Index Service filters and skips the first
1000 documents (OFFSET 1000), and returns the keys
to the next 10 documents (LIMIT 10) to the Query Service

4. The Query Service fetches the 10 documents using the
keys returned from the Index Service

5. The Query Service returns the results to the application

Clients

1. Submit the Query 4. Return Query Result

3. Fetch Documents2. Scan Index

Data
Service

Query
Service

Index
Service

5

https://www.couchbase.com/benchmarks

Similarity between Couchbase N1QL to Oracle SQL

 Language Capabilities Couchbase N1QL Oracle SQL

SELECT with Aggregation
SELECT name, age, COUNT(name)
FROM customers
GROUP BY name, age

SELECT name, age, COUNT(name)
FROM customers
GROUP BY name, age

SELECT with Ordering
SELECT id, name, age
FROM customers
ORDER BY age ASC , balance DESC

SELECT id, name, age
FROM customers
ORDER BY age ASC , balance DESC

SELECT with Pagination
SELECT id, name, age
FROM customers
OFFSET 400 LIMIT 50

SELECT id, name, age
FROM customers
OFFSET 400 ROWS
FETCH NEXT 50 ROWS ONLY

SELECT with JOINs
SELECT id, name, age, balance
FROM customers, accounts
INNER | LEFT OUTER | RIGHT OUTER ...

SELECT id, name, age, balance
FROM customers, accounts
INNER | LEFT OUTER | RIGHT OUTER |
FULL OUTER JOIN ...

INSERT
INSERT INTO customers(KEY,VALUE)
VALUES (' c123', {'id':'c123',
'name':'Jan', 'age':23})

INSERT INTO customers(id, name, age)
VALUES ('c123', 'Jan', 23)

UPDATE
UPDAT E | UPSERT customers
SET age = 32
WHERE id = 'c123'

UPDATE customers
SET age = 32
WHERE id = 'c123'

DELETE
DELETE
FROM customers
WHERE id = 'c123'

DELETE
FROM customers
WHERE id = 'c123'

GRANT
GRANT query_select
ON orders, customers
TO bill, linda

GRANT SELECT
ON oe.customers_seq
TO hr

REVOKE
REVOKE query_update
ON customers
FROM debby

REVOKE UPDATE
ON hr.employees
FROM oe

6

Summary of Couchbase N1QL versus MongoDB’s API

 Query Capabilities Couchbase N1QL MongoDB

Declarative Query Yes No

Based on Standards Yes No

Scalable Indexing
Yes with global indexes that can

be partitioned independently

Local indexes restricted to the same

shard key as the underlying results in

scatter-gather and slow queries

Query - Performance at
Scale (see benchmarks)

High performance with global
indexes and query optimization

Poor performance due to scatter-
gather and JOIN limitations

SQL DML/DDL Support

SELECT Yes db.collection.find()

INSERT/UPDATE/
DELETE/MERGE

Yes Partial - limited Bulk.find() expressions

CREATE/DROP INDEX Yes db.collection.dropindex()

JOIN Support

INNER JOIN Yes
Manually add a $match stage to

remove non-matching documents
from $lookup (Left Outer Join)

LEFT OUTER JOIN Yes
$lookup - Join on scalars only. Cannot

join on two sharded collections.

RIGHT OUTER JOIN Yes No

Sub-Query with JOINs
in FROM Clause

Yes No

Set Operators

UNION Yes No

INTERSECT Yes No

EXCEPT Yes No

7

https://www.couchbase.com/benchmarks
https://docs.mongodb.com/manual/reference/method/Bulk/
https://docs.mongodb.com/manual/reference/operator/aggregation/lookup/

Query Optimization

Hash JOINs Yes No

Predicate Pushdown
to Index

Yes No

Aggregate Pushdown
to Index

Yes No

Pagination Pushdown
to Index

Yes No

Covered Query Yes
Does not support arrays
or sharded collections

Functional Indexes
Yes, can create indexes on
functions and expressions

Support indexes on built-in
hash function only

Array Indexing

Can index arrays nested at any
level or any array expressions.

Filtering and unnesting exploits
 indexes for better performance.

Can only index top level arrays.
Poor performance for queries

on nested arrays.

Conclusion

MongoDB provides a long list of checkbox features, but many fail to work in concert with each other, leading to

a database that cannot scale, perform, nor adapt to meet today’s enterprise requirements. Ultimately, MongoDB

is best suited for flexible data access where low latency, high throughput, multiple access patterns, geographic

replication, or offline access are not required.

Couchbase, on the other hand, is routinely used for caching layers, sources of truth, and systems of record

across high-scale and high-flexibility use cases, including offline-first mobile applications. By design, Couchbase

is accessed and managed through a consistent set of APIs, and scaled, upgraded, and diagnosed as a single unit,

making Couchbase a complete database platform that not only addresses the needs of today, but offers the

flexibility to adapt to the needs of tomorrow.

Learn more

To learn more, contact your Couchbase sales representative today or visit:

couchbase.com | couchbase.com/downloads

Couchbase’s mission is to be the data platform that revolutionizes digital innovation. To make this possible,

Couchbase created the world’s first Engagement Database to help deliver ever-richer and ever-more-

personalized customer and employee experiences. Built with the most powerful NoSQL technology, the

Couchbase Data Platform was architected on top of an open source foundation for the massively interactive

enterprise. Our geo-distributed Engagement Database provides unmatched developer agility and manageability,

as well as unparalleled performance at any scale, from any cloud to the edge.

https://docs.mongodb.com/manual/core/query-optimization/#covered-query
https://docs.mongodb.com/manual/core/query-optimization/#covered-query
https://www.couchbase.com
http://www.couchbase.com/downloads

