
WHITEPAPER

Couchbase vs.
MongoDB™

for Query

WHITEPAPER 2

INTRODUCTION

Couchbase is a distributed NoSQL document-oriented database with a core
architecture that supports a flexible data model, easy scalability, consistent high
performance, always-on 24x365 characteristics, and advanced security. It has been
adopted across multiple industries and in the largest enterprises for their most
business-critical applications. Many of those customers, including Equifax, Nuance,
and LinkedIn, have gone through rigorous evaluations of Couchbase alongside
MongoDB, and have chosen Couchbase based on a strong set of differentiated
capabilities and architectural advantages, including:

•	 Scale-out and high availability

•	 Global deployment

•	 SQL/SQL++ query for JSON

•	 Hybrid Operational and Analytical Processing (HOAP)

•	 Full-text search

•	 Vector search

•	 Time series

•	 Geospatial

•	 Server-side eventing and functions

•	 Embedded mobile database

In this paper, we will focus on how MongoDB compares to Couchbase when it comes
to query. Couchbase offers a declarative query language, SQL++, based on open
standards, providing users with the familiarity of SQL and the flexibility of JSON
and nested data structures.

MongoDB’s Proprietary Query API and
Aggregation Framework
MongoDB provides a query method, find(), to query a collection with simple filtering
and projection. For more complex operations, users have to use the aggregation
framework to join, process, and aggregate multiple documents to return the result.

The MongoDB query method and aggregation framework are proprietary and
procedural, with limited expressive power and poor performance.

• �Proprietary. MongoDB’s query method and aggregation framework is non-
standard, and for developers with RDBMS experience, it is a huge learning
curve, leading to longer development cycles and complexity in maintaining
the applications.

• �Procedural. Eliot Horowitz, MongoDB co-founder, said: “MongoDB aggregation is
similar to Unix pipeline. The output of one stage goes into another…[it’s] very procedural.
Lets you think about in a very procedural way.” The problem with this approach is that
the burden to optimize a query is now on the developers, and a pipeline optimized

WHITEPAPER 3

for certain data distribution may not work if the data changes, and requires
manual intervention again to optimize it. So this adds to the complexity of
application development and ongoing maintenance.

• �Complexity. MongoDB’s aggregation framework is complex even for simple
queries that you can easily express in SQL. For example, you can use this link
to translate your favorite SQL statements into MongoDB’s proprietary syntax to
see the complexity of MongoDB’s aggregation framework.

• �Limited expressive power. MongoDB’s proprietary query method and aggregation
framework has many limitations because, unlike SQL++, it is not based on proven
tuple calculus. For example, it has limited support for joins and cannot join across
sharded collections. Read more about JOIN capabilities in both.

• �Limited query optimization. Because the aggregation pipeline is procedural
and lacks expressive power, applications need to compensate by doing complex
data processing on the client side, leading to complexity and poor performance.
See the YCSB-JSON benchmark comparing the performance and scalability of
queries between Couchbase and MongoDB.

• �Local indexes. MongoDB documentation states the limitation of having local
indexes that share the same shard key as the local data as follows: “If a query
does not include the shard key, the mongos must direct the query to all shards in
the cluster. These scatter gather queries can be inefficient. On larger clusters, scatter
gather queries are unfeasible for routine operations.” Furthermore, indexes are
maintained synchronously and as more indexes are added, writes slow down
further and further.

SQL++: FLEXIBILITY OF JSON + EXPRESSIVE POWER OF SQL

Unlike MongoDB, Couchbase adopts open standards and extends SQL to support
JSON. Couchbase Server stores JSON documents and supports a query language
called SQL++.

In fact, SQL++ is the first commercial implementation of the SQL++ specification,
a query language for semi-structured data based on the JSON data format that was
developed by Prof. Yannis Papakonstantinou and others at University of California
San Diego1. Like its predecessor, SQL++ extends the mathematical foundation of
tuple calculus to support the richness of JSON, making it a highly expressive query
language that encompasses both SQL and the JSON data model. Don Chamberlin,
co-inventor of SQL, wrote a tutorial on SQL++ using SQL++ for the query examples.
We have seen other vendors increase their support of SQL++ and we believe it will
become the de facto query language for NoSQL systems.

Here are the key benefits of SQL++ over the proprietary MongoDB query method
and aggregate framework:

• �Familiarity of SQL. SQL was designed as a query language that business users
can understand and express. SQL++ extends SQL to support JSON, and therefore

1 https://arxiv.org/abs/1405.3631

http://www.querymongo.com/
https://www.couchbase.com/blog/joining-json-comparing-couchbase-n1ql-mongodb/
https://www.couchbase.com/benchmarks/
http://google.com/url?q=https://docs.mongodb.com/manual/core/distributed-queries/&sa=D&source=docs&ust=1749483123193562&usg=AOvVaw3RBtJSC4ZHsWk7WWDotajF
http://google.com/url?q=https://resources.couchbase.com/sql_tutorial&sa=D&source=docs&ust=1749484130215326&usg=AOvVaw0L-q55cSZgb_SVoFQAn8Ih
https://arxiv.org/abs/1405.3631

WHITEPAPER 4

developers find SQL++ familiar and easy to learn. Expressing the same query in
MongoDB requires a developer to write code using MongoDB’s proprietary and
complex query API and aggregation framework. See below for examples of the
simplicity of SQL++’s versus the complexity of MongoDB’s proprietary API.

• �Declarative. SQL++ is declarative. You express what you want to accomplish
and the database system will figure out the most optimal way of accessing and
processing the data to get the results. Couchbase builds on decades of advances
in database research in query optimization and execution to deliver high
performance at scale.

• �Expressive power. Because of the strong mathematical foundation, SQL++
is a highly composable and expressive query language. Each query uses JSON
documents as its input, and the output is another JSON document. SQL++ is
not constrained by how data is stored physically.

• �Global indexes. Couchbase supports global indexes that can be partitioned
differently from the underlying data to optimize different queries for higher query
throughput and lower latencies. Each index can be replicated multiple times for
high availability and replicas are automatically load balanced. Each index can also
be partitioned depending on the expected size and range scan needs. Couchbase
can support as many indexes as needed to improve query performance without
impacting write latency. This also means that the data model does not need to be
changed for different query access patterns as multiple different indexes can align
the data in different ways.

• �Tunable consistency. Global indexes are updated asynchronously to the data
mutations which is why write throughput is not impacted by more and more
indexes being added. They are constantly updated with an advanced memory-
memory database change protocol. Each query can then be made strongly
consistent on a per-query basis which allows the application developer, who has
context on what is most important in given parts of the application, to decide
what the right priority is between consistency and latency without affecting the
resources of the rest of the platform.

SIMPLICITY OF SQL++ VS. COMPLEXITY OF
MONGODB’S PROPRIETARY QUERY API

Here is an example of a query that finds all the destination airports starting from
San Francisco International Airport (SFO). Even for a simple JOIN, it requires a
cumbersome pipeline syntax on the MongoDB query. You need another “let” stage
to create the local variables for airport attributes to differentiate between the two
collections. You also need an additional $match clause to eliminate non-matching
(empty) airline docs, followed by grouping and sorting. As you can see, the MongoDB
query is longer and much more complex to do the same job as Couchbase SQL++.

WHITEPAPER 5

SQL++ queries look the same as the ANSI SQL you are familiar with, while the
MongoDB API becomes intractably complex with fairly simple queries. See this blog
for a detailed comparison between JOIN support in Couchbase and MongoDB.

Couchbase SQL++

MongoDB

PERFORMANCE COMPARISON: COUCHBASE VS. MONGODB

Applications using SQL++ are easier to write and maintain because of the expressive
power and familiarity of SQL++ to developers. The system also scales better because
it automatically picks the optimal execution path, saving application developers
time and removing complexity. Read more about a deep dive into Couchbase
query optimization.

https://www.couchbase.com/blog/joining-json-comparing-couchbase-n1ql-mongodb/
https://dzone.com/articles/a-deep-dive-into-couchbase-n1ql-query-optimization
https://dzone.com/articles/a-deep-dive-into-couchbase-n1ql-query-optimization

WHITEPAPER 6

Because of the lack of a good optimizer and limitation in the aggregation pipeline,
MongoDB performs poorly even for simple JOIN queries involving sharded partitions.
As you can see from one of the tests in the YCSB-JSON benchmark, Couchbase is 6x
to 18x higher in throughput than MongoDB because MongoDB has to ship the data
to the client and process the joins in the application. Transferring large amounts
of data between the server and client is inefficient and impacts the overall system
throughput by saturating the network.

Here is a simple example from the YCSB-JSON benchmark for a pagination query that
skips the first 1,000 documents (OFFSET 1000) and returns the next 10 documents
(LIMIT 10):

	 SELECT * from YCSB

	 WHERE address.country = “USA”

	 ORDER BY address.zip

	 OFFSET 1000 LIMIT 10

For MongoDB, this query requires each of the shards to sort and return 1,010
documents to the query coordinator, which then has to aggregate the documents
from all shards, re-sort the documents, and then skip the first 1,000 documents to
return the final 10 documents to the application. This scatter-gather approach with
local indexes results in processing by all shards (scatter), and returning of data from
all shards to the query coordinator (gather), and then further processing by the
query coordinator to finalize the results to the application.

https://www.couchbase.com/benchmarks/

WHITEPAPER 7

Contrast this with the efficient query processing of Couchbase using global indexes.
The Query Service simply pushes the request down to the Index Service to filter and
skip the first 1,000 documents, and return the keys to the next 10 documents. It then
fetches the 10 documents from the Data Service and returns the documents to the
application. This is an order of magnitude more efficient than MongoDB as shown in
the YCSB-JSON benchmark.

http://google.com/url?q=https://www.couchbase.com/benchmarks&sa=D&source=docs&ust=1749487797884192&usg=AOvVaw1cCsAJ-xyAEuruV_wLDeJu

WHITEPAPER 8

SUMMARY OF COUCHBASE SQL++ VERSUS MONGODB’S API

Query Capabilities Couchbase SQL++ MongoDB

Declarative query Yes No

Based on standards Yes No

Scalable indexing Yes, with global indexes that can
be partitioned independently

Local indexes restricted to
the same shard key as the
underlying results in scatter-
gather and slow queries

Query – performance at scale
(see benchmarks)

High performance with global
indexes and query optimization

Poor performance due to
scatter-gather and JOIN
limitations

SQL DML/DDL SUPPORT

SELECT Yes db.collection.find()

INSERT/UPDATE/DELETE/MERGE Yes Partial – limited Bulk.find()
expressions

CREATE/DROP INDEX Yes db.collection.dropindex()

JOIN Support

INNER JOIN Yes

Manually add a $match stage
to remove non-matching
documents from $lookup
(Left Outer Join)

LEFT OUTER JOIN Yes $lookup – Limited non-scalar
support

RIGHT OUTER JOIN Yes No

Sub-Query with joins in FROM clause Yes No

SET OPERATORS

UNION Yes Partial support with $unionWith

INTERSECT Yes No

EXCEPT Yes No

Query Optimization

Hash joins Yes No

Predicate pushdown to index Yes Very Limited

Aggregate pushdown to index Yes Very Limited

Pagination pushdown to index Yes Very Limited

Covered query Yes
Does not support arrays,
limited support of sharded
collections

Functional indexes Yes, can create indexes on functions
and expressions

Lacks multi-expression and
deep array index capabilities

Array indexing

Can index arrays nested at any level
or any array expressions; filtering
and unnesting exploits indexes for
better performance

Can only index top-level arrays;
poor performance for queries
on nested arrays

https://www.couchbase.com/benchmarks/
http://mongodb.com/docs/manual/reference/method/bulk/
https://www.mongodb.com/docs/manual/reference/operator/aggregation/lookup/
https://www.mongodb.com/docs/manual/core/query-optimization/#covered-query
https://www.mongodb.com/docs/manual/core/query-optimization/#covered-query
https://www.mongodb.com/docs/manual/core/query-optimization/#covered-query

WHITEPAPER 9

SQL++ MULTI-MODEL EXTENSIONS

In addition to its core querying capabilities, Couchbase SQL++ extends beyond
traditional document queries to support a broad set of advanced capabilities.
These include support for time-series data, full-text search (FTS), vector search for
AI and semantic use cases, user-defined functions (UDFs), common table expressions
(CTEs), graph traversals, geospatial, and AI-powered extensions for categorization,
data masking, sentiment analysis, content generation, language translation,
and more, all accessible through SQL++.

SQL++ throughout Couchbase:

•	 Couchbase Lite (the embedded Couchbase Mobile database) runs SQL++
directly on-device, enabling powerful local querying even in offline-first
mobile applications.

•	 Couchbase Analytics provides isolated OLAP processing using the same
SQL++ language, allowing complex analytical queries to run alongside
operational workloads without impacting performance.

These consistent SQL++ extensions across core database services, mobile,
full-text search, vector search, and analytics enable developers to write rich,
advanced applications on a single platform – without having to learn or manage
multiple query languages or systems.

CONCLUSION

MongoDB provides a long list of checkbox features, but many fail to work in concert
with each other, leading to a database that cannot scale, perform, nor adapt to meet
today’s enterprise requirements. Ultimately, MongoDB is best suited for flexible data
access where low latency, high throughput, multiple access patterns, geographic
replication, or offline access are not required.

Couchbase, on the other hand, is routinely used for caching layers, sources of truth,
and systems of record across high-scale and high-flexibility use cases, including
offline-first mobile applications. By design, Couchbase is accessed and managed
through a consistent set of APIs, and scaled, upgraded, and diagnosed as a single
unit, making Couchbase a complete database platform that not only addresses the
needs of today, but offers the flexibility to adapt to the needs of tomorrow.

To learn more, contact your Couchbase sales representative today or visit:

couchbase.com | couchbase.com/downloads

http://couchbase.com
http://couchbase.com/downloads

Modern customer experiences need a flexible database platform that can
power applications spanning from cloud to edge and everything in between.
Couchbase’s mission is to simplify how developers and architects develop,
deploy and consume modern applications wherever they are. We have
reimagined the database with our fast, flexible and affordable cloud database
platform Capella, allowing organizations to quickly build applications that
deliver premium experiences to their customers—all with best-in-class price
performance. More than 30% of the Fortune 100 trust Couchbase to power
their modern applications.

For more information, visit www.couchbase.com

© 2025 Couchbase. All rights reserved.

https://www.couchbase.com/

