
Couchbase vs. MongoDB™
for Global Deployment

Introduction

Couchbase is a distributed NoSQL document-oriented database with a core architecture that supports a flexible

data model, easy scalability, consistent high-performance, always-on 24x365 characteristics, and advanced

security. It has been adopted across multiple industries and in the largest enterprises for their most business-

critical applications. Many of those customers, including: cars.com, DirecTV and Staples, have gone through

rigorous evaluations of Couchbase alongside MongoDB, and have chosen Couchbase based on a strong set of

differentiated capabilities and architectural advantages, including:

• Scale-Out and High Availability

• Global Deployment

• SQL/SQL++ Query for JSON

• Hybrid Operational and Analytical Processing

• Full-Text Search

• Server-Side Eventing and Functions

• Embedded Mobile Database

In this paper, we will focus on how MongoDB compares to Couchbase when it comes to global deployment.

Couchbase Server provides support for both intra-cluster replication and cross datacenter replication (XDCR),

providing an easy way to replicate data from one cluster to another for disaster recovery as well as better data

locality (getting data closer to its users).

Global Deployment that is Scalable and Highly Available

MongoDB is Master-Slave At Best

MongoDB’s multi-datacenter deployment is just an extension of its intra cluster distributed cluster management

mechanism, with primary and replica sets. In case of multi datacenter deployment, the members of the replica

set are distributed between different datacenters.

• Write Unavailability. One of the major issues with the architecture of MongoDB is that a shard can have

only one primary for writes. That primary is a bottleneck and single point of failure. If it goes down, that

shard will not be able to take any writes until another primary is elected which has a median ~12 seconds.

Since secondaries copy the data from primary’s oplogs, this implies for a specific data partition, when

primary goes down, application is read-only.

• Topology. As only the primary can take writes, the only network topology that can be supported is

unidirectional star topology. Rapidly expanding high availability applications with global data distribution

need the flexibility to configure any topology (e.g. ring, hub-and-spoke, tree), as well as changing the

topology for future needs with no impact on performance.

1

https://docs.mongodb.com/manual/replication/
https://docs.mongodb.com/manual/core/replica-set-oplog/#replica-set-oplog

•	 Multiple Hops and Increased Latency. For multi-datacenter replication, the replica sets (mongod

processes) are deployed in different datacenters. MongoDB provides horizontal scale-out across multiple

nodes using sharding. As indicated in the figure below, applications issue queries to a query router that

dispatches the query to the appropriate shards. So, for any query to be directed to the remote cluster,

there are multiple hops from driver to query router to primary to secondary which increases latency.

By default, the reads are always directed to the primary. Since there is only one primary per shard, any

non-local reads add to latency. MongoDB provides nearest read preference which can be exercised to

ensure the reads are directed to the nearest datacenter. However, since only primary can take writes,

the non-local writes will continue to be very expensive and MongoDB cannot claim read to be consistent

with writes for global deployments with read preference other than primary.

•	 Setup and Manageability. The approach to set up a successful replication across geographically diverse

data centers is a cumbersome process especially due to replica set distribution challenges the admins

have to encounter. For example:

•	 Right distribution of replica set members to ensure they can form a majority for voting to elect

primary and sustain datacenter loss. When the number of active members in the replica set

is insufficient to provide a majority, no primary node can be elected for the replica set and it

cannot provide write services. In this case, it is read-only. In a setup with simple primary and a

single DR cluster for backup, the backup might not accept writes when primary goes down as

there is no majority to elect it. A basic DR might not work in this setup.

•	 Difference in distribution best practices for deployment in a 3 member replica set vs a 5

member replica set. This complexity increases with more replicas. Setting up a datacenter isn’t

cheap and such deployment requirements should not be imposed . An odd number of replica

sets is advocated, if there is an even number without an arbiter, forming a quorum to elect

primary might be challenging.

•	 Configuration of member eligibility to become primary, defining priority 0 / hidden members,

read preferences etc.

•	 Configuration of majority success policy to ensure one primary overrules when multiple

primaries exist. When a network partition occurs, multiple primary nodes may exist for a short

time. In this case, it is necessary to set a majority success policy to ensure even if there are

multiple primary nodes, a single primary node still can write data to the majority of nodes.

Application does not know when cluster will go down and it could be expensive to use majority

write concern.

•	 Not Active-Active. With a set up as indicated in the diagram below, MongoDB claims to configure each

datacenter to accept writes. This is not truly an active-active setup because each datacenter is capable

of taking writes only specific to that shard. Non-local writes (ex. SYD to NYC) are very expensive. Even

with Global clusters introduced in 4.0, MongoDB is able to pin shards where ever the datacenter is located

and define policies to direct the reads and writes to the local datacenter, but it is not a master-master

architecture and all writes cannot be local. All other challenges indicated above will continue to persist.

2

Secondary:NYC

Secondary:NYC

Primary:NYC

Primary:LON

Secondary:SYD

Secondary:SYD

Secondary:LON

Secondary:LON

Primary:SYD

https://docs.mongodb.com/manual/reference/program/mongod/
https://docs.mongodb.com/manual/reference/read-preference/#nearest
https://docs.mongodb.com/manual/tutorial/deploy-geographically-distributed-replica-set/
https://docs.mongodb.com/manual/tutorial/add-replica-set-arbiter/
https://docs.atlas.mongodb.com/global-clusters/

•	 No Conflict Resolution. There is no concept of conflict resolution as there is only one primary node

for writes.

Couchbase XDCR is Flexible, Easy and Truly Active-Active

eBay has deployed XDCR with a 3 cluster bidirectional active-active ring topology for their session management

application, Mirror Image uses XDCR for their online advertising application with a hybrid topology of

bidirectional active-active linear topology and unidirectional star topology and Paypal uses XDCR with a 4

cluster bidirectional ring topology for an identity management application.

In Couchbase, cross datacenter replication (XDCR) is independent of intra cluster replication. Cross datacenter

replication involves replicating active data to multiple, geographically diverse data centers.

•	 High Performance Architecture. Couchbase XDCR occurs between two or more completely independent

clusters which both handle reads and/or writes. It is a memory-to-memory, highly parallel, stream based

replication which can be tuned and even capped to efficiently manage bandwidth. Furthermore, XDCR

can be paused/resumed manually if needed and is automatically resilient to any network disruption.

All application access (read and/or write) occurs to the local cluster for best performance and highest

availability. Depending on the desired behavior of the application, multiple clusters may handle write

traffic or may be dedicated to read traffic only.

•	 Flexibility. XDCR offers highly flexible replication:

•	 Unidirectional or bidirectional: Unidirectional or bidirectional replication is supported by XDCR.

•	 Topologies: Multi-master architecture supports any topology such as star, ring, chain, mesh,

one-to-many, many-to-one, etc.

•	 Bucket level replication: Depending on application requirements, buckets can be

selectively replicated.

•	 Filtering: Key based filtering allows a further subset of data to be replicated. Advanced

filtering (non-key based) is on the roadmap and will further strengthen this capability.

3

ACTIVE

REPLICA

ACTIVE ACTIVE

Couchbase Server Cluster

Replication

Datacenter 1

Read-Write
Requests

ACTIVE ACTIVE ACTIVE

Couchbase Server Cluster

Replication

Datacenter 2

Read-Write
Requests

{ }

{ }

REPLICA REPLICA REPLICA REPLICA REPLICA

BucketA BucketA

BucketB BucketB

BucketC BucketC

Cluster 1 Cluster 2

https://www.youtube.com/watch?v=WcHWkkde1Kg&feature=youtu.be&t=668

•	 Setup & Manageability. For XDCR, set up is extremely user-friendly via remote cluster reference with IP

and user credentials. Once configured, clusters respond dynamically to topology changes without any

further administration.

•	 Active-Active Conflict Resolution. With XDCR, multiple clusters can act as write masters. Conflicts

occur when the same document is modified in two different locations before it is replicated. To maintain

consistency between these two locations, one version is automatically chosen as the ‘correct’ version.

Couchbase supports two conflict resolution mechanisms, timestamp-based (last write wins) and revision-

based (most update wins).

•	 Timestamp-based conflict resolution: the document version which was updated most recently

(based on an HLC) will be chosen.

•	 Revision-based conflict resolution: The version of a document with the most updates will

be chosen.

•	 Network bandwidth optimization. With XDCR, the customers can set the limit for the bandwidth

utilization depending on the application’s need. This allows them to control the rate of replication as

XDCR operates at the speed of network and memory. With the upcoming release, users will even have

the flexibility to assign the priorities for their replication streams and dictate the quality of service.

•	 Multi-cluster autofailover. Via this functionality, client SDK monitors the health of clusters and based

on the priorities assigned to the cluster,it will direct the traffic to a different cluster. This relieves the

application developer of the complexity involved to make this switch. In short, this feature provides

automatic failover at the cluster level.

Summary of Couchbase XDCR versus MongoDB Replication

 XDCR Capabilities Couchbase MongoDB

 Architecture Completely independent cluster,

which can be scaled and managed

without any dependencies

Extension of intra-cluster, not

an independent system

Performance Memory-memory, stream based,

highly parallelized replication. The

number of replication streams per

node can be (2-100)

Secondaries replicate the

data from primary’s oplog or

any other secondary’s oplog.

It is parallel but streams are

1-1 (primary-secondary)

Write Concerns Any cluster can be configured to

accept writes

Only primary can take

writes which impacts write

availability and non-local

writes are very expensive

Read Concerns Always local Default primary which

might be expensive, manual

configuration required to

read from secondaries

Auto-failover Cross cluster automatic failover can

be enabled at the SDK level

Automatic but unpredictable

Replication Flexibility Very flexible - bucket level, advanced

optimization techniques to tune to

the need

Tuning, choosing speed,

bandwidth is not possible

Topology Support for complex topologies -

Bidirectional, Star, mesh, chain, ring

anything

No support for complex

topology - Unidirectional,

Star. Primary is a bottleneck

4

https://docs.couchbase.com/server/5.5/xdcr/xdcr-conflict-resolution.html#choosing-the-right-conflict-resolution-method
https://cse.buffalo.edu/tech-reports/2014-04.pdf

 XDCR Capabilities Couchbase MongoDB

Active-Active Supported No support

Conflict Resolution Yes - most write wins or last write

wins

No conflict resolution. Only

one primary supported

Setup and Configuration Easy configurability with intuitive UI

and CLI. No design challenge like no.

of shards, policies, etc.

Replica set distribution is

tricky and can be painful as

the replica sets increase

Filtering to replicate subsets Key-based filtering to replicate

subsets of data using doc key IDs

No filtering supported

Learn more

To learn more, contact your Couchbase sales representative today or visit:

couchbase.com | couchbase.com/downloads

Couchbase’s mission is to be the data platform that revolutionizes digital innovation. To make this possible,

Couchbase created the world’s first Engagement Database to help deliver ever-richer and ever-more-

personalized customer and employee experiences. Built with the most powerful NoSQL technology, the

Couchbase Data Platform was architected on top of an open source foundation for the massively interactive

enterprise. Our geo-distributed Engagement Database provides unmatched developer agility and manageability,

as well as unparalleled performance at any scale, from any cloud to the edge.

Conclusion

MongoDB provides a long list of checkbox features, but many fail to work in concert with each other, leading to

a database that cannot scale, perform, nor adapt to meet today’s enterprise requirements. Ultimately, MongoDB

is best suited for flexible data access where low latency, high throughput, multiple access patterns, geographic

replication, or offline access are not required.

Couchbase, on the other hand, is routinely used for caching layers, sources of truth, and systems of record

across high-scale and high-flexibility use cases, including offline-first mobile applications. By design, Couchbase

is accessed and managed through a consistent set of APIs, and scaled, upgraded, and diagnosed as a single unit,

making Couchbase a complete database platform that not only addresses the needs of today, but offers the

flexibility to adapt to the needs of tomorrow.

5

https://www.couchbase.com
http://www.couchbase.com/downloads

