
EBOOK

Architecture
Overview

Database-as-a-Service &
Mobile App Services

WHITEPAPER 2

Contents
INTRODUCTION	 3

Database-as-a-Service 	 3

Mobile App Services	 3

DATABASE-AS-A-SERVICE	 3

Core database design	 3

JSON document data model	 5

Data access methods	 6

Organizing concepts for documents	 6

Deployment design concepts	 7

Services		 7

Distributed design	 8

AS-A-SERVICE-ASPECTS	 9

Architecture	 9

Management 	 10

Deployment	 10

Development	 11

Connecting	 12

Operations	 13

Security		 13

APP SERVICES FOR MOBILE AND IOT	 15

About Capella App Services	 15

About “Offline-First” applications	 15

App Services architecture	 16

App Endpoint connection points	 17

User journey	 18

Prepare		 18

Connect		 19

Operate		 19

SUMMARY	 20

Resources	 20

WHITEPAPER 3

INTRODUCTION

Capella is a modern distributed multi-model NoSQL Database-as-a-Service (DBaaS).
Capella’s core architecture supports a flexible JSON data model at its foundation
and uses familiar relational and multi-model data access services to supply data to
operational and analytic applications. Capella’s advantages include fast in-memory
performance, easy scalability, mobile app services, always-on availability, and
advanced security.

These modern requirements have driven Couchbase’s development from
inception to:

•	 Ensure high-performance operations

•	 Provide data model and data access flexibility

•	 Support distributed cluster networks and mobility

•	 Provide incredible value and low TCO

Database-as-a-Service
Capella is the fastest, easiest, and most affordable way to start with Couchbase.
As a fully managed DBaaS, it automates setup, configuration, replication, and
ongoing operations so you can focus on development and improve your time
to market. And Capella puts industry-leading performance, flexibility, and cloud
scalability at your fingertips.

Mobile App Services
Capella App Services is a fully managed backend designed for mobile, IoT, and
edge applications to guarantee they are always on, regardless of web connectivity
and speed. Developers use App Services to access and sync data between Capella
DBaaS and edge devices, and to authenticate and manage mobile and edge
application users.

DATABASE-AS-A-SERVICE

Core database design
Couchbase developed its platform following three guiding principles: memory and
network-centric architecture, workload isolation, and an asynchronous approach
to everything.

MEMORY AND NETWORK-CENTRIC ARCHITECTURE FOR SPEED
AND LOW LATENCY
•	 The most-used data and indexes are transparently cached in-memory for

fast reads.

WHITEPAPER 4

•	 Writes are performed in-memory and replicated or persisted synchronously or
asynchronously. Transaction guarantees can be used to ensure consistency, but
may introduce lags in performance.

•	 Internal Database Change Protocol (DCP) streams data mutations from
memory to memory at network speeds to support replication, indexing,
and mobile synchronization.

MULTI-MODEL DATA ACCESS BLENDS JSON FLEXIBILITY WITH KEY-VALUE SPEED
Couchbase is a pioneer multi-model database that offers multiple data access
methods to gain read and update access to its foundational JSON and key-value
storage structures. Many other NoSQL systems have only one access method that is
bound to their physical storage design structures on disk to minimize access latency.

Couchbase has multiple data access models including key-value, SQL++ query
service, full-text search service, eventing service, operational analytics aggregation
service, and backup service. In the Couchbase design, every access model can
simultaneously utilize the cluster’s data.

WORKLOAD ISOLATION AND ASYNCHRONOUS PROCESSING
All databases perform different tasks in support of an application. These tasks
include persisting, indexing, querying, aggregating, and searching data. Each of
these workloads has slightly different performance and resource requirements.
Couchbase’s Multi-Dimensional Scaling (MDS) isolates these workloads from one
another at both the process and node levels. MDS allows these workloads to be
scaled independently from one another and their resources to be optimized as
necessary. It allows the database to be performance-matched to the performance
needs of the application, and the database to its available infrastructure.

For cloud deployments, it is advantageous from a cost perspective to red-line
infrastructure instances before adding them, and to avoid idle and underutilized
node instances. Couchbase transparently manages the topology, process
management, statistics gathering, high availability, and data movement between
these services.

Traditional databases increase latency and block application operations while
running synchronous operations (for example, while persisting data to disk or
maintaining indexes). Couchbase allows write operations to happen at memory
and network speeds while asynchronously processing replication, persistence,
and index management. Spikes in write operations don’t block read or query
operations, while background processes will persist data as fast as possible
without slowing down the rest of the system. ACID transactions are available to
the developer to ensure durability and consistency while data is in flight. Multiple
transaction options allow the developer to decide when and where to increase
latency in exchange for durability and consistency of transactions. Somewhat higher
latency can be anticipated when multi-document and cross-collection transactions
are implemented.

COUCHBASE IS A PIONEER

MULTI-MODEL DATABASE

THAT OFFERS MULTIPLE DATA

ACCESS METHODS TO GAIN

READ AND UPDATE ACCESS

TO ITS FOUNDATIONAL JSON

AND KEY-VALUE STORAGE

STRUCTURES.

WHITEPAPER 5

JSON document data model
The JSON data model supports basic and complex data types, including numbers,
strings, nested objects, and arrays. JSON provides rapid serialization and
deserialization, is native to JavaScript, and is the most common REST API data format.
Consequently, JSON is extremely convenient for web application programming.

A document often represents a single instance of an application object (or nested
objects). It can also be considered analogous to a row in a relational table, with
the document attributes acting similarly to a column. Couchbase provides greater
flexibility than the rigid schemas of relational databases by allowing JSON documents
with varied schemas and nested structures. Developers may express many-to-many
relationships without requiring a reference or junction table. Subcomponents of
documents can be accessed and updated directly, and multiple document schemas
can be aggregated into a virtual table with a single query.

JSON DOCUMENT FLEXIBILITY
In the Couchbase document model, a schema is the result of an applications
structuring of its documents and their containment structures such as buckets,
scopes, and collections. Schemas can be defined by application developers and
managed by applications. This is in contrast to the relational model where the
database (and the database administrator) manages the schema. Couchbase created
the bucket-scope-collection-document organizational hierarchy (further explained
below) to allow maximum flexibility in defining application data metamodels. A single
JSON documents structure offers even more flexibility for the developer beyond the
dynamic nature of scopes and collections. A JSON document’s structure consists of
its inner arrangement of attribute-value pairs. How the documents are designed
or updated over time is up to the application developer. They can be normalized,
denormalized, or a hybrid depending on the needs and evolution of the application.
Using JSON, the developer can avoid the lengthy schema design, testing, and
deployment cycles of traditional RDBMS-based systems.

A SINGLE JSON DOCUMENT’S

STRUCTURE OFFERS EVEN

MORE FLEXIBILITY FOR THE

DEVELOPER BEYOND THE

DYNAMIC NATURE OF SCOPES

AND COLLECTIONS.

WHITEPAPER 6

Data access methods
Managing JSON data is at the core of Couchbase’s document database capabilities,
and there are several ways for applications to access the data.

Access Method Description

Key-value
An application provides a document ID (the key), and
Couchbase returns the associated JSON or binary object.
The inverse occurs with a write or update request.

Full text search

Using text analyzers with tokenization and language
awareness, a search is done for a variety of field and
boolean matching functions. Search returns document
IDs, relevance scoring, and optional context data.

Query & analytics

SQL-based query syntax, similar to what is used
with relational databases, interacts with JSON data
and returns matching JSON results. Comprehensive
DML, DQL, and DDL syntax supports nested data and
nonuniform schema.

Eventing

Custom JavaScript functions are executed within the da-
tabase based on timers or data changes. Accessing and
updating data, writing out to a log, or calling out to an
external system are all supported.

Organizing concepts for documents
Couchbase offers a flexible multi-level data containment and organization structure
to organize documents, optimize cluster performance, and facilitate horizontal
scaling. This data containment model consists of four levels: buckets, scopes,
collections, and documents. This model maps easily to familiar RDBMS constructs of
databases, schema, tables, and rows.

•	 Buckets – The topmost container in Couchbase is the bucket. One or many
buckets can be defined and assigned to a Capella database.

•	 Scopes – Scopes are an intermediate data organization structure similar to a
relational database schema. Scopes are defined by the collections of documents
they contain or can access.

•	 Collections – Collections are categorical or logically organized groups of
documents. The premise of collections is to behave as traditional table structures.
Most group-oriented access activities are processed at the collection level to
minimize full-database operations, simplify replication logic, and streamline
indexing options.

•	 Documents – Documents are stored within buckets, but can also be organized
within scopes and collections.

COUCHBASE OFFERS A

FLEXIBLE MULTI-LEVEL

DATA CONTAINMENT AND

ORGANIZATION STRUCTURE

TO ORGANIZE DOCUMENTS,

OPTIMIZE CLUSTER

PERFORMANCE, AND

FACILITATE HORIZONTAL

SCALING.

WHITEPAPER 7

Deployment design concepts
Services and nodes are key elements of the database architecture.

•	 Services – The core of Couchbase is the Data Service that feeds and supports
all the other systems and data access methods. Multiple services that offer
different types of data access or processing include Query, Indexing, Backup,
Search, Analytics, and Eventing. A service is an isolated set of processes dedicated
to particular tasks. For example, indexing, full-text search, and query are each
managed as separate services. One or more services can be run on one or more
nodes as needed.

•	 Nodes – Capella nodes are virtual machines that host single instances of
Couchbase Server within a cloud service provider. Nodes can be added or
removed easily through the Capella Control Plane and data is then automatically
redistributed evenly across all nodes.

•	 Database – A database consists of one or more nodes running Couchbase
Server. Nodes can be added or removed from a cluster. Replication of data
occurs between nodes, and Cross Data Center Replication (XDCR) occurs between
different clusters that are geographically distributed.

Services
Each service has its own resource quotas, and where applicable, related indexing and
inter-node communication capabilities. This provides several very flexible methods
to scale services when needed. In addition to scaling up to larger machines or scaling
out to more nodes, Couchbase also provides the ability to scale specific services
independently from one another using multi-dimensional scaling. This MDS is the
foundation for Couchbase workload isolation and is covered in more detail below.

Couchbase is different from other platforms where a monolithic set of services are
installed on every node in a cluster. Instead, Couchbase uses a core data capability
that feeds all the other services and a shared-nothing architecture that allows
developer control over workload isolation. Small-scale environments can share
the same workloads across one or more nodes, while higher scale and performance
can be achieved with dedicated nodes to handle specific workloads. This provides
the ultimate in scale-out flexibility. The cluster can be scaled in or out and its
service topology can be changed on demand with zero interruption or change to
the application.

Applications communicate directly with each service through a common SDK that is
always aware of the topology of the cluster and how services are configured.

•	 Data Service – The Data Service, or key-value (KV) engine, is the foundation for
storing data and must run on at least one node of every database. It is responsible
for caching, persisting, and serving data to applications and other services. The
cache provides consistent low latency for individual document read and write
operations and streams documents to other services via Database Change
Protocol (DCP). Due to their simplicity, KV operations execute with extremely
low (often sub-millisecond) latency. The KV store is accessed using simple CRUD
(create, read, update, delete) APIs, and provides the simplest interface when
accessing documents using their IDs.

WHITEPAPER 8

•	 Query Service – An engine for processing SQL++ queries. SQL++ combines the
flexibility of JSON with the expressive power of SQL. It provides a rich set of
features and familiar data definition language (DDL), data manipulation language
(DML), and query language statements, but can operate in the face of NoSQL
database features such as key-value storage, multi-valued attributes, and nested
objects. Also, users can define ACID transactions within SQL++ for one or more
documents across collections and nodes. Transactions in SQL++ have adopted a
nearly identical syntax to SQL for relational databases. The Query Service uses a
cost-based query optimizer, patented in 2021, to take advantage of indexes that
are available.

•	 Index Service – Indexing is an important part of making queries run efficiently and
self-update as data mutates. This service supports multi-index types and includes
an Index Advisor that recommends specific indexes to build based upon query
statements and data structure.

•	 Search Service – An engine for performing full-text searches on stored JSON data.
Users can create and query inverted indexes for searching of free-form text within
a document. Customers using the search service often no longer need a third-
party search tool.

•	 Eventing Service – Eventing supports custom server-side functions (written
in JavaScript) that are automatically triggered using an event-condition-action
model. These functions receive data from the DCP stream and execute code when
triggered by data mutations. This service offers a feature like the change data
capture found in event handlers, and also offers a feature similar to the multi-
channel data streaming found in solutions such as Apache Kafka.

•	 Analytics Service – This service provides an ad hoc querying capability without the
need for indexes. It uses the same SQL++ language as the query service, and uses
a hybrid operational and analytical processing model for real-time operational
analytics on active JSON data within Couchbase. The service efficiently runs
complex queries over a large number of documents and includes features such as
ad hoc joins, set, aggregation, and grouping operations with efficient parallel query
processing and bulk data handling.

Distributed design
Capella’s distributed nature makes high availability, scaling, and disaster
recovery easier.

•	 Data distribution – Couchbase automatically partitions and replicates data
into vBuckets (synonymous to shards) to automatically distribute data across
nodes. This helps enable data replication, failover, and dynamic database
reconfiguration. Because vBuckets do not have a fixed physical location on
nodes, they are mapped to nodes in a cluster map. Through the Couchbase SDK,
the application automatically accesses data without needing to know the exact
location of the data.

•	 Data transport via DCP – As data mutates, in-memory replication is used to
maintain data updates within Capella and to external services such as Spark or
Kafka that are fed from the DCP stream.

WHITEPAPER 9

•	 Multi-dimensional scaling – You can improve performance and throughput for
systems by independently scaling services to match workloads. Scale-out and
scale-up are the two scalability models typical for databases, and Couchbase takes
advantage of both. You can combine and mix these models in a single database to
maximize throughput and minimize latencies.

•	 Failover – If a node fails in Capella, replicated data on other nodes are promoted
to active. A new node is then automatically provisioned and data is rebalanced
across all the nodes.

AS-A-SERVICE-ASPECTS

Architecture
Capella’s core architectural aspect is the split of the web UI Control Plane designed
for management and the Data Plane for data storage.

Organization Account (Data Plane)

Oversees all databases
from a Single Pane of Glass

Web Users

IaaC Tools

Capella Control Plane

Database VPC-1 (Region A)

AZ-1 AZ-2 AZ-3

COUCHBASE DATABASE 1

Database VPC-2 (Region B)

AZ-1 AZ-2 AZ-3

COUCHBASE DATABASE 2

PEER

APP VPC-1 APP VPC-2

Web UI & External APIs

Cloud
Orchestration

Monitoring
& Alerting

Security
& Access

Billing
& Support

WHITEPAPER 10

CONTROL PLANE
The Control Plane is a web UI that manages the cloud orchestration Infrastructure-
as-a-Service (IaaS), monitoring, alerting, security, access, billing, and support
capabilities. It’s the access point for your organization’s users and also allows access
to infrastructure-as-code (IaC) tools such as Terraform. Backend services can be
accessed by REST-based tools via a management API.

DATA PLANE
The Data Plane is where you manage your Capella databases. A database resides in
a single region (distributed across multiple availability zones) within a single cloud
service provider (CSP), but the Control Plane can control multiple databases across
various cloud service providers. Furthermore, data can be replicated between
databases, with that replication configured within the Control Plane. From a security
perspective, the Data Plane has no internet access unless IPs are specifically
allowed or a connection is established through VPC peering or an AWS PrivateLink
connection. Disk data, backups, and all traffic is encrypted.

Management

USERS, PROJECTS, AND RBAC
An organization is the top-level organizational element for managing users, projects,
and databases. By default, organizational members do not have data access, but
instead have access to the Control Plane. A project is used to organize groups of
databases. People must be added to projects and assigned access to databases
within a project. Organizations can also add SSO groups (teams) with a project role to
access databases within a project.

SINGLE SIGN-ON (SSO)
SSO is a convenient way to maintain users by making use of their existing corporate
credentials. Authentication is delegated to the SSO provider (Azure AD and Okta are
supported). Provisioning new users via SSO eliminates the overhead of having to
send invites.

Deployment

DATABASE DEPLOYMENT
When deploying a database, you must choose a CSP, a region, and a CIDR block.
(A default is provided, but can be changed before deploying.) Couchbase is
constantly adding regions, and up-to-date regions can be found on the Couchbase
Documentation pages for AWS, GCP, and Azure. You can select the version of the
Couchbase Server you would like to use and assign services to nodes. These services
can be changed after deployment. You can also choose your support plan and
availability mode (single or multi-availability zones), and can choose to purchase
credits on a prepaid or pay-as-you-go basis.

https://docs.couchbase.com/cloud/reference/aws.html
https://docs.couchbase.com/cloud/reference/gcp.html
https://docs.couchbase.com/cloud/reference/azure.html

WHITEPAPER 11

STORAGE ENGINE
Capella supports two different backend storage mechanisms, which are set per
bucket. A single Capella database can have a mix of Couchstore and Magma buckets.

•	 Couchstore – Couchstore is the default bucket storage engine that has been in
use for more than 10 years. It’s optimized for high performance with large datasets
while using fewer system resources. (The minimum bucket size for the Couchstore
backend is 100 MiB.) If you have a small dataset that can fit in-memory, then you
should consider using Couchstore.

•	 Magma – Capella’s latest storage engine is designed for high performance
with very large datasets that don’t fit in-memory. It’s ideal for use cases that
rely primarily on disk access. The performance of disk access will be as good as
the underlying disk subsystems. Magma can work with very low amounts of
memory for large datasets (e.g., for a node holding 5 TiB of data, Magma can be
used with only 64 GiB RAM). It’s especially suited for datasets that won’t fit into
available memory.

You can learn more about Capella’s storage engines in our Couchbase
documentation.

Development
Couchbase provides several tools for developers:

PLAYGROUND
This tool is integrated into Capella and comes with an SDK tutorial and a SQL++
tutorial. The SDK playground offers examples of multiple SDK languages. SQL++ gives
examples of the Couchbase query language. Both tutorials are designed to guide a
new developer through several chapters from basics to more advanced concepts.

QUERY WORKBENCH
The Query Workbench allows users to access data via SQL++ and see data in JSON
and tabular formats. The tool provides a built-in index advice feature that tells
users what indexes are needed to optimize queries. Inverted search indexes can be
created to support search, and JavaScript-based user-defined functions can be used
to manipulate data.

COUCHBASE SHELL
Couchbase Shell (cbsh) is a modern, productive shell that provides CLI access to
Capella. It can be obtained via GitHub.

https://docs.couchbase.com/cloud/clusters/data-service/storage-engines.html#couchstore-and-magma-at-a-glance
https://github.com/couchbaselabs/couchbase-shell/blob/main/README.md

WHITEPAPER 12

Connecting

COUCHBASE SDKS
Capella works with the latest versions of all supported Couchbase SDKs. Developers
can choose from over 10 SDKs of their favorite programming languages.

CONNECTORS
To exchange data with other platforms, we offer various big data connectors for
products like Kafka, Spark, and Elasticsearch.

REST API
Couchbase provides a series of RESTful APIs that enable you to integrate with
Capella to perform operations such as:

•	 Onboarding and offboarding users

•	 Managing the lifecycle of a cluster

•	 Getting monitoring information for a cluster

APPLICATION CONNECTION
For connecting applications to Capella, you have several options:

•	 Public connection – This is the simplest option and requires the use of IP
addresses for encrypted data to traverse the public internet. Public connections
should not be used for production environments.

•	 VPC peering – The CSP backbone contains both the connection and traffic. This
option reduces networking costs compared to a public connection.

•	 AWS private endpoint – Allows Capella to be offered as a private service and
functions as if it were hosted directly within a team’s Amazon VPC. This allows
access to a specific service or application, and only private endpoints can initiate
a connection.

ACME DATA PLANE VPC

COUCHBASE DATABASE

ACME APP VPC

PRIVATE SUBNET

ROOT
CERTIFICATE

ACME APP VPC

PRIVATE SUBNET

ROOT
CERTIFICATE

10.0.0.1 10.0.0.2 10.0.0.3

 OPTION 2: VPC PEERING
• Connect to Node Private IP
• Traffic contained within CSP backbone
• Joined network between the 2 VPCs

NO NEED TO
IP ALLOWLIST

NO NEED TO
IP ALLOWLIST

ACME DATA PLANE VPC

COUCHBASE DATABASE

10.0.0.1 10.0.0.2 10.0.0.3

 OPTION 3: PRIVATE LINK
• Connect to Node Private IP
• Traffic contained within CSP backbone
• Unidirectional and very secured

PUBLIC IP PUBLIC IP PUBLIC IP PRIVATE IP PRIVATE IP PRIVATE IP PRIVATE IP PRIVATE IP PRIVATE IP

ACME DATA PLANE VPC

COUCHBASE DATABASE

IP ALLOWLIST
ROOT
CERTIFICATE

ROOT
CERTIFICATE

ROOT
CERTIFICATE

ACME APP VPC

PUBLIC SUBNET

ROOT
CERTIFICATE

34.123.45.1 34.123.45.2 34.123.45.3

 OPTION 1: PUBLIC CONNECTION
• Connect to Node Public IP
• Needs IP Allowlisting
• Traffic traverses public Internet

https://docs.couchbase.com/home/sdk.html
https://docs.couchbase.com/home/sdk.html
https://docs.couchbase.com/cloud/public-api-guide/introducing-public-api.html

WHITEPAPER 13

Operations

SCALING
Capella makes it easy to evolve your configuration. You can add or remove nodes at
any time and change the amount of RAM, vCPUs, disk space, and type of disk volume
(general purpose or high performance). Changes are made with a few clicks, and
Capella automatically rebalances data to the new configuration.

MULTI-DIMENSIONAL SCALING
MDS allows you to further optimize your configuration as application needs evolve
over time. MDS allows workloads to be scaled independently and hardware usage to
be optimized to help drive down total cost of ownership.

GEO-REPLICATION
Capella’s Cross Data Center Replication (XDCR) technology replicates data between
databases in different regions. XDCR provides an easy way to replicate active data in-
memory to multiple geographically diverse data centers either for disaster recovery
or for high availability. It can be set up on a per-bucket or per-collection basis and
can be unidirectional or bidirectional. It also provides built-in conflict resolution if the
same document was mutated on a separate database before it was replicated.

BACKUP AND RESTORE
A robust scheduled backup and retention policy is recommended as part of an
overall disaster recovery plan for production data. Backup is done on a per-bucket
level and can be scheduled on monthly, weekly, or daily cycles, or on demand. You
can set up both full and incremental backups. Restoring data can happen at the
bucket or collection level with filtering options. Additionally, data can be restored
into Capella from a self-managed Couchbase Server environment.

MONITORING AND ALERTING
Capella provides a wide variety of metrics to monitor and help optimize
performance. Metrics can be viewed within a Capella Control Plane configurable
dashboard or incorporated into your Prometheus tool. Capella has a set of
conditions that generate alerts and provide actionable suggestions when a threshold
is hit (e.g., a suggestion to increase RAM or disk size).

MAINTENANCE AND UPGRADES
If you want to upgrade your databases, those processes can be scheduled within
the Control Plane. Security updates are forced immediately. Notifications about
upgrades are sent via email and within the UI.

Security
Couchbase supports the most critical and sensitive workloads for industry-leading
businesses every day. Capella’s security architecture is based on industry best
practices for security and three key pillars: Verify explicitly, least privilege, and
platform monitoring. You can learn more and get detailed security whitepapers and
information about compliance at our Trust Center.

INFRASTRUCTURE SECURITY

CAPELLA PROVIDES

A WIDE VARIETY OF

METRICS TO MONITOR

AND HELP OPTIMIZE

PERFORMANCE.

https://www.couchbase.com/products/capella/trust/

WHITEPAPER 14

The foundation of security in a cloud database is a hardened environment that
removes nonessential software, roles, and ports while leveraging an IaaS provider’s
alerting and auditing services. Trusted and immutable operating system (OS) images
are used to protect the OS, with verification upon deployment and ongoing scanning
for vulnerabilities afterward. Additionally, end-to-end configuration is automated
via templates to ensure consistency. Monitoring is also in place to identify
potential misconfigurations.

NETWORKING SECURITY
By default, the Data Plane only allows clusters to connect to trusted IP
addresses that have been defined within the Control Plane. Any attempted
connection from an IP address not in a cluster’s list of allowed IP addresses will be
denied. With VPC peering, traffic never crosses the public internet, which reduces
threat vectors and DDoS attacks. If you’re using AWS for your Data Plane, you can
further enhance security by using PrivateLink to contain traffic within the CSP
backbone with unidirectional access. Alternatively, you can set up Capella as a
private service that functions as if it were hosted directly within a team’s Amazon
VPC. This allows access to a specific service or application, and only private endpoints
can initiate a connection.

ACCESS SECURITY
To bolster security access, Capella is designed so that the Control Plane and Data
Plane live in separate VPCs. Access to data is separate from access to the Control
Plane, and specific credentials must be established for application access. All
admins, users, and applications must authenticate in order to gain access and
then be authorized with specific access rights. Multi-factor authentication is possible
and recommended.

DATA SECURITY
Data is encrypted in transit and at rest. In transit, data is encrypted via TLS, which
cannot be turned off. If you want to extend data storage encryption within the
database, this can be done at the field level within JSON documents. Also, backup
data is written to encrypted disks using the cloud provider’s native encryption
process. Capella creates, manages, and controls cryptographic keys using a CSP’s key
management system (e.g., KMS for AWS).

VULNERABILITY MANAGEMENT
Capella protects against threats like brute force attacks, rate-limiting attacks, cross-
site request forgery, and more. Capella maintains centralized logs securely and alerts
Couchbase site reliability engineers (SREs) of operational concerns should they arise.
To reduce potential vulnerabilities, patching is automated and includes monitoring
alerts and management reviews. Couchbase has established a formal Incident
Response Policy to inform you in the event of a security-related event.

WHITEPAPER 15

APP SERVICES FOR MOBILE AND IOT

About Capella App Services
App Services provides a hosted gateway for bidirectional data synchronization
between Capella and embedded apps on smartphones, tablets, IoT devices, and
custom embedded devices. It works in tandem with Couchbase Lite, the embeddable
version of the Couchbase database. Wherever Couchbase Lite runs, App Services can
securely sync the data it captures to Capella buckets and other embedded devices.

App Services also manages secure data access with role-based access control,
providing authentication for mobile users. These key capabilities in Capella are
offered as a ready-to-use service for mobile and IoT developers, making it faster and
easier than ever to build highly performant and reliable applications.

About “Offline-First” applications
For applications that need to operate in areas with slow or no internet, embedded
Couchbase Lite provides on-device data storage and processing. This allows apps to
work all of the time, whether on or offline (hence the term offline-first). App Services
sync is smart enough to know when connectivity is interrupted. When it’s restored,
App Services can automatically start syncing from where it left off even after long
periods of time.

More importantly, when multiple Couchbase Lite clients are close to one another,
but have no internet, they can still do peer-to-peer syncing. This is a feature unique
to Couchbase that enables offline-first collaboration without the need for any central
control point.

WHITEPAPER 16

App Services architecture

When you create an App Service and associate it with a Couchbase Server cluster,
you are effectively extending or enabling it for data sync. A Couchbase Server cluster
can only be linked to one App Service.

When an App Service is created, a cluster of Sync Gateway nodes is deployed
behind the scenes in the same VPC network as the corresponding server cluster.
Communication between the App Services cluster and the central Couchbase Server
cluster is secured using TLS and x.509 cert-based authentication. The Sync Gateway
cluster is fronted by a load balancer that balances incoming client requests across
the App Services nodes.

An App Service can handle multiple client applications, each represented by an App
Endpoint. Conceptually, an App Endpoint represents the instance of your application
on the App Service. Each App Endpoint is backed by a server bucket. If you have
multiple applications, each will have its own App Endpoint.

WEB USERS

APP SERVICES
ADMIN APP

TLS

APP USER
BROWSER
WEB APP

MOBILE APP
COUCHBASE LITE

DESKTOP
COUCHBASE LITE

CLIENT APPS

Cluster VPC-1

COUCHBASE
CLUSTER-1

Encrypted
mTLS auth

APP SERVICES-1

App
Endpoint 1

App
Endpoint 2

Load Balancer

Cluster VPC-2

COUCHBASE
CLUSTER-2

Encrypted
mTLS auth

APP SERVICES-1

App
Endpoint 3

Load Balancer

Capella Data Plane

Capella Control Plane

Web UI & External APIs

Cloud
Orchestration

Monitoring
& Alerting

Security
& Access

Billing
& Support

WHITEPAPER 17

Mobile, desktop, and web client apps can access and sync data by connecting to the
corresponding App Endpoint.

App Endpoint connection points
There are multiple options for connecting clients to an App Endpoint. Your choice
depends on the type of application and use case.

SECURE WEBSOCKETS PUBLIC URL
Offline-first sync is the ability for apps to run in offline mode in the face of temporary
or extended network disruptions and to sync data with the backend servers
when connectivity is restored. Mobile, desktop, and embedded apps powered by
Couchbase Lite can locally store and access data in disconnected mode and sync
data with App Services when there is connectivity. With the internet being inherently
unreliable, the use cases for offline-first data sync are vast and varied.

SECURE PUBLIC REST API
Applications can also access data securely over a public REST Endpoint. This is useful
when there is reliable network connectivity and no need for offline storage, or when
the apps are running on hardware that doesn’t have local storage for running a local
embedded database like Couchbase Lite.

SECURE ADMIN REST API
Administration applications can be granted authenticated access to the Admin REST
API in order to programmatically create and manage users, roles, and sessions.
Admin Apps are typically hosted in the cloud backend. An example of an Admin
App is a login service that handles custom authentication and is responsible
for registering users via the secure admin REST API following successful user
authentication.

LOAD BALANCER

COUCHBASE CLUSTER

App Services

Admin
credentials

(locked
IP Access)

App User
Credentials

App Services
Admin App

App Services
Metrics App

APP ENDPOINT 1

BROWSER
WEB APP

BROWSER
WEB APP

MOBILE APP
COUCHBASE LITE

SYNC

Admin
credentials

(locked
IP Access)

SECURE PUBLIC
DATA ACCESS

SECURE PUBLIC
DATA ACCESS

SECURE
DATA SYNC

SECURE
DATA SYNC

MOBILE APP
COUCHBASE LITE

ADMIN REST URL PUBLIC REST URL WEBSOCKETS URL METRICS URL

WHITEPAPER 18

SECURE METRICS REST API
Monitoring frameworks like Prometheus can access stats exposed via the metrics
REST Endpoint. In addition, App Services also supports a dashboard of common
operational stats.

User journey

Prerequisite: App Services requires a Couchbase Capella server cluster. Follow these
steps to create a Capella server cluster and set up a bucket.

Prepare

LAUNCH APP SERVICES
When you create an App Service and associate it with a server cluster, you are
effectively enabling it for data sync. When creating an App Service, you give it
a name, designate an associated Capella cluster, then choose the deployment
configuration that includes the correct number of nodes and type of computer
(RAM/core).

CREATE APP ENDPOINTS
App Endpoints represent the instance of your application on an App Service. You can
create multiple App Endpoints on an App Service, each backed by a unique bucket
in the corresponding Couchbase Server cluster. By default, all documents in the
corresponding bucket are imported by the App Endpoint.

CONFIGURE APP ENDPOINTS
When the App Endpoint is created, it is set up in offline mode. This allows users
to complete the security configuration of the App Endpoint before exposing it
to applications.

AUTHENTICATION PROVIDER
Authentication providers define how users are authenticated with the App Services.
A default auth provider of basic auth is selected for you during App Endpoint
creation. So you can skip this config if the default option works for your application.

PR
EP

A
R

E
C

O
N

N
EC

T
O

PE
R

A
TE

Launch
App Services

1
Create App
Endpoints

2
Configure App
Endpoints

3

Connect Apps to App Endpoints
4

Monitoring, Scaling, Reconfiguration & Decomissioning
5

SETUP AUTHORIZED PROVIDER

CREATE APP USERS & ROLES

DEFINE ACCESS CONTROL

WHITEPAPER 19

Capella supports the following modes of authentication:

•	 Basic Auth – This is where the app users are authenticated using username
and password credentials that are Base64 encoded and passed in as part of the
authorization header of an HTTP request.

•	 Open ID Connect (OIDC) – App users are authenticated against a third-party
identity provider that is registered with App Endpoint. This is implemented using
OIDC Implicit flow.

•	 Anonymous – In this mode, we allow unauthenticated read-only access to data.
This mode can be useful when your app is only dealing with public static data.

USER MANAGEMENT
With the exception of “Anonymous” mode, all client-side access must be
authenticated with suitable user credentials. The choice of how users (and roles) are
created depends on the Authentication Provider that is configured.

•	 Basic Auth – Users are created via the Capella web UI or via Admin REST Endpoint.

•	 Open ID Connect (OIDC) – By enabling the “auto-register” option when
configuring OIDC provider, users will be automatically created on App Service
after successful authentication.

ACCESS CONTROL
Access control is implemented using the channel-based access control model
of Couchbase Mobile. Access control specifies who has access to what data. This
is specified via a JavaScript access control function. Read access control is at the
granularity of a document, while write access control is at the granularity of a field.

Connect
After completing the security setup for the App Endpoint, unpause the App Endpoint
to bring it online. Once online, apps can be connected using any connection points
discussed earlier.

Operate
Once your App Service is operational, you can administer the App Service and App
Endpoints and change the configuration to meet the evolving needs of the apps.

MONITORING
Metrics dashboards provide insights into resource utilization of the App Service as
well as the operational state of the App Endpoints. These include stats such as the
number of documents read/written, error counts, number of active replications, etc.

ACTIVITY LOG
All key system events of type info, warning, and error are recorded in the activity
center. Users are also alerted to key events that may need attention, such as
significantly high memory utilization over an extended period of time.

ON-DEMAND SCALING
To keep up with the evolving needs of the app, users can scale App Services
horizontally and/or vertically by changing the number of nodes and/or compute type.

https://www.couchbase.com/blog/oidc-implicit-flow-client-authentication-couchbase-sync-gateway/
https://docs.couchbase.com/sync-gateway/current/access-control-concepts.html

WHITEPAPER 20

SUMMARY

Capella is a modern distributed multi-model NoSQL DBaaS. It includes fast in-
memory performance, easy scalability, mobile App Services, always-on availability,
and advanced security. At the heart of Capella is a flexible JSON data model, and
it uses familiar relational and multimodel data access services to supply data to
modern applications. Capella’s architectural benefits include:

•	 High-performance operations

•	 Data model and data access flexibility

•	 Powerful solutions for mobile and IoT applications

•	 An incredible value that lowers TCO

Resources
•	 Couchbase Capella product page

•	 App Services page

•	 Capella free trial

•	 Capella Documentation

•	 Capella Trust Center

https://www.couchbase.com/products/capella/
https://www.couchbase.com/products/capella/app-services/
https://www.couchbase.com/downloads/
https://docs.couchbase.com/cloud/index.html
https://www.couchbase.com/products/capella/trust/

Modern customer experiences need a flexible database platform that can
power applications spanning from cloud to edge and everything in between.
Couchbase’s mission is to simplify how developers and architects develop,
deploy and consume modern applications wherever they are. We have
reimagined the database with our fast, flexible and affordable cloud database
platform Capella, allowing organizations to quickly build applications that
deliver premium experiences to their customers—all with best-in-class price
performance. More than 30% of the Fortune 100 trust Couchbase to power
their modern applications.

For more information, visit www.couchbase.com and follow us on Twitter.

© 2023 Couchbase. All rights reserved.

https://www.couchbase.com

	INTRODUCTION
	Database-as-a-Service
	Mobile App Services

	Database-as-a-Service
	Core database design
	JSON document data model
	Data access methods
	Organizing concepts for documents
	Deployment design concepts
	Services
	Distributed design

	As-a-service-aspects
	Architecture
	Management
	Deployment
	Development
	Connecting
	Operations
	Security

	App Services for Mobile and IoT
	About Capella App Services
	About “Offline-First” applications
	App Services architecture
	App Endpoint connection points
	User journey
	Prepare
	Connect
	Operate

	Summary
	Resources

