
Couchbase
Under the Hood

WHITEPAPER 2

Contents
INTRODUCTION	 5

Essential NoSQL requirements and features	 5

The original multi-model NoSQL database	 8

Couchbase is an open source database company	 8

Core performance design principles	 8

Memory and network-centric architecture for speed

and low latency	 8

Multimodel data access blending JSON flexibility

with Key/Value speed	 9

Workload isolation	 9

Asynchronous approach to everything	 9

JSON DATA MODEL AND ACCESS METHODS	 10

JSON document data model	 10

JSON document flexibility	 10

Document access methods	 12

Key, values, and sub-documents	 13

Keys		 13

Values		 13

Sub-documents	 13

Key organizing concepts for documents	 14

Flexible, dynamic data containment model	 14

Buckets	 15

vBuckets	 15

Scopes		 15

Collections	 15

Documents	 15

Cluster design concepts	 16

Nodes		 16

Clusters	 16

Services	 16

WHITEPAPER 3

COUCHBASE SERVICES	 16

Data Service and Key/Value Engine	 17

Couchstore and Couchbase Magma, High Data-Density Storage	 17

Managed object cache	 17

Document expiration	 18

Memory management	 18

Compression	 18

Compression modes	 18

Compaction	 19

Mutations	 19

Key-value data access	 20

Query service	 20

ACID Transactions in SQL++	 21

Compare SQL Transactions to Couchbase SQL++	 22

Cost-based Query Optimization	 22

Index service	 22

Index Advisor	 23

Query consistency	 23

Memory-optimized indexes (MOI)	 24

Search service	 24

Eventing service	 25

Analytics		 25

Mobile and the edge App Services	 27

DISTRIBUTED FOUNDATION	 28

Node-level architecture	 28

Cluster architecture	 29

Cluster/node configuration	 30

Cluster manager	 30

Client connectivity	 31

Topology-aware client	 32

Data transport via Database Change Protocol (DCP)	 32

Multi-Dimensional Scaling (MDS)	 32

Homogeneous scaling model	 33

Independent scaling model	 33

WHITEPAPER 4

Data distribution	 34

Index partitions and replicas	 34

Partitioning other services	 35

Rebalancing the cluster	 35

High availability	 36

Couchbase and CP Theorem	 36

Intra-cluster replication	 36

Node failover	 38

Failover choices	 38

Server group awareness	 39

Cross Datacenter Replication (XDCR)	 40

Priority		 42

Security		 42

Encryption at rest	 43

Encryption over-the-wire	 43

Moving data between nodes	 43

Moving data between datacenters	 44

Mobile client synchronization	 44

Peer-to-peer synchronization	 45

Conflict resolution	 45

RESOURCES	 46

WHITEPAPER 5

INTRODUCTION

Couchbase is a modern distributed, multimodel NoSQL database. Couchbase’s core
architecture supports a flexible JSON data model at its foundation and uses familiar
relational and multimodel data access services to supply data to operational and
analytic applications. Couchbase advantages include fast in-memory performance,
easy scalability, mobile synchronization to, from, and among Couchbase Lite,
always-on 24x365 availability, advanced security, and affordable cloud deployment
alternatives. Couchbase can be accessed as a fully-managed database- as-a-service
called Couchbase Capella, and also offers Kubernetes-managed containerized
cluster deployments with its Cloud Native Database Automation product line.
Couchbase also supports local installations of its Community and Enterprise edition
binary packages.

As a multimodel database, Couchbase supports multiple data access methods within
a dynamic data containment structure, on top of a flexible JSON document data
format. Couchbase consolidates multiple data access layers and engines into a single
platform that would otherwise require single-purpose databases to work together.
This “polyglot persistent” design architecture was introduced in the early 2000s so
that RDBMS and NoSQL databases could coexist in supplying data to applications.
Couchbase provides the performance of a key-value powered caching layer, the
flexibility of a JSON document-based dynamic source of truth, and the reliability of
a relational database system of record. Couchbase eliminates the need to manage
data models and consistency between multiple systems, learn different languages
and APIs, and manage independent technologies.

This paper describes how the internal components of the Couchbase database
(Capella, Server, and Mobile) operate with one another. It assumes you have a basic
understanding of Couchbase and are looking for a deeper technical understanding of
how things operate beneath the surface.

Essential NoSQL requirements and features
NoSQL databases evolved beyond enterprise relational databases to address
performance and flexibility deficiencies made evident as applications became
more sophisticated and “Big Data” became an industry-standard buzzword.
Relational databases tend to operate primarily as systems of record, maintaining
transactional data in a highly consistent manner. But several architectural principles
(e.g. normalization of objects, adherence to fixed schema and data typing, single
node transactional design, two-phase commit) have made them difficult to modify
after deployment and scale to larger distributed workloads while simultaneously
delivering responsive and highly available applications.

Pragmatic business needs for more advanced technical requirements have pushed
multimodel NoSQL databases to the forefront. The business needs for high
performance, application-driven flexibility over the makeup of its data, distributed
processing and mobility, and the overarching need to lower operational costs and
escape vendor lock-in are key drivers as to why organizations seek out cloud-native

PRAGMATIC BUSINESS NEEDS

FOR MORE ADVANCED

TECHNICAL REQUIREMENTS

HAVE PUSHED MULTIMODEL

NOSQL DATABASES TO THE

FOREFRONT.

WHITEPAPER 6

NoSQL systems. These modern requirements have driven Couchbase’s development
from inception:

•	 Ensure high-performance

•	 Provide data model and data access flexibility

•	 Support distributed cluster networks and mobility

•	 Provide incredible value and low TCO

Couchbase has been focused on setting a high standard in each of these areas. The
result is a robust and accessible database platform with exceptional performance at
scale, multimodel flexibility, and SQL familiarity delivered in both self-managed and
fully-managed cloud-based product lines. Because of this, Couchbase has become a
modern, multipurpose NoSQL database. Learn more about how Couchbase delivers
on these core database requirements in the following table and later in the text of
this paper.

Fast Flexible Familiar Affordable Future-Proof
•	 Memory-first

design

•	 Cloud-native scale

•	 Asynchronous
clusters

•	 HA, DR & backup

•	 Low latency Cloud
2 Edge

•	 JSON Document

•	 Multimodel
Services

•	 Deploy Anywhere

•	 Multidimensional
Scaling

•	 Mobile & Edge
ready

•	 SQL++ query
language

•	 Dynamic Schema

•	 ACID SQL
Transactions

•	 Cost -based query
optimizer

•	 SDKs for 12+
languages,
including mobile

•	 Networks of
distributed &
mobile databases

•	 Elastic cluster
scaling, sharding, &
rebalancing

•	 Geo-replication
via XDCR

•	 High-density
storage

•	 Fully-managed
DBaaS, w/o cloud
lock-in

•	 Self-managed
Kubernetes
Autonomous
Operator

•	 Predictable
price/
performance

Couchbase Managed and Customer-Self Managed Cloud Deployments

WHITEPAPER 7

FAST FLEXIBLE FAMILIAR FUTURE-PROOF

•	 Memory-and-network-
centric architecture, with
an integrated cache
delivering high throughput
and sub-millisecond
latency

•	 Asynchronous clusters

•	 Always-on, fault-tolerant
design

•	 Microservices architecture
with built-in auto-sharding,
replication, and failover

•	 Isolated and independent
scaling of workloads, with
no downtime for upgrades
or code changes

•	 Flexible JSON data model
supports continuous
delivery. Make schema
changes without down-
time

•	 Extract value using a
broad set of multi-model
data access capabilities
(full-text search, real-time
analytics, data streaming,
change-data-capture,
and python and Java-
Script-based User-Defined
Functions)

•	 Deliver and sync data
to the edge and to
mobile devices

•	 Includes foundational
RDBMS concepts like
schema, ACID transac-
tions and User-defined
functions

•	 Leverage common SQL++
query patterns for joins,
aggregations, and more

•	 Patented cost-based
query optimizer

•	 SDKs for 12+ languages
including mobile

•	 Full-stack security with
end-to-end encryption
and role-based access
control

•	 Fully-managed Data
base-as-a-service
without cloud vendor
lock-in

•	 Self-managed
Kubernetes-based
cloud native database
automation with
Autonomous Operator

•	 Global deployment with
low write latency using
active-active
cross cloud replication

•	 Infrastructure agnos-
tic support across
local, virtual machines,
clouds, and container-
ized environments.

Cloud to Edge Deployment

Distributed Database Management

Multimodel Data
Access and SQL++

Data Organization
and Processing

Embeddable
Database

SD
Ks

 a
nd

 A
PI

En
te

rp
ri

se
 S

ec
ur

it
y

WHITEPAPER 7

WHITEPAPER 8

The original multi-model NoSQL database
The original multi-model NoSQL database Couchbase was originally founded through
the merger of two open source database companies, CouchOne and Membase.
CouchOne employed developers of Apache CouchDB, an original, highly-reliable,
document database, while Membase employed developers of memcached, a high-
performance, memory-first, key-value database. The merger of these teams led to
the design of Couchbase, a reliable, scalable, fast in-memory, key-value database
with document-based access and storage. In this model, document identification
“keys” store “value” data as a JSON document. Couchbase was the first of its kind,
dual model access database, setting the standard for advancing consolidation of
single-access NoSQL datastores. Couchbase further distanced itself from its origin
sources by adding support for SQL++ (aka N1QL) as its primary query language.
Today, multimodel convergence continues to grow in order to address the variety of
functional demands from modern applications.

Unfortunately, many people still confuse Couchbase with CouchDB even though they
have evolved along their own diverging paths, and no longer resemble each other
whatsoever.

COUCHBASE IS AN OPEN SOURCE DATABASE COMPANY
Couchbase favors and supports the open source development model. The source
code to the Community Editions of the Couchbase database and its mobile product
line is available for non-commercial use under the Business Software License
(BSL 1.1), which converts to the permissive Apache 2.0 license after four years.
Software development kits (SDK’s) for more than a dozen application and mobile
programming languages are available as Apache 2.0 open source. Couchbase also
maintains a robust library of open source projects at couchbaselabs.

These principles of speed, flexibility, familiarity, and affordability have been built in
the very core of the database engine to ensure low latency and reliable, yet easy to
manage, replication. Around this core are a set of data access services that run and
scale independently of each other. These are delivered through a unified programming
API, established security capabilities, and external technology integrations, and made
available through fully managed and self-managed offerings including Couchbase
Capella, a fully-hosed database-as-a-service, and through the Kubernetes-based, Cloud
Native Database Automation product line for self-managed deployments.

Core performance design principles
To effectively deliver the above features, three guiding principles have been followed
when developing Couchbase: memory and network-centric architecture, workload
isolation, and an asynchronous approach to everything.

MEMORY AND NETWORK-CENTRIC ARCHITECTURE FOR SPEED
AND LOW LATENCY
•	 The most used data and indexes are transparently cached in memory for fast reads.

•	 Writes are performed in memory and replicated or persisted synchronously or
asynchronously. Using transaction guarantees ensures consistency, but may
introduce lags in performance.

TODAY, MULTIMODEL

CONVERGENCE CONTINUES TO

GROW IN ORDER TO ADDRESS

THE VARIETY OF FUNCTIONAL

DEMANDS FROM MODERN

APPLICATIONS.

https://github.com/couchbaselabs

WHITEPAPER 9

•	 �Internal Database Change Protocol (DCP) streams data mutations from memory
to memory at network speeds to support replication, indexing, and mobile
synchronization.

MULTIMODEL DATA ACCESS BLENDING JSON FLEXIBILITY
WITH KEY/VALUE SPEED
Couchbase is a pioneer in offering multiple data access methods to gain, read, and
update access to its foundational JSON and Key/Value storage structures. This type of
NoSQL database is referred to as “multimodel” because many NoSQL systems have
only one access method which is bound to their physical storage design structures
on disk to minimize access latency.

•	 Couchbase’s original access methods are:

•	 Key/Value, derived from Memcached-based design and JSON, the emerged
standard format for document databases like CouchDB, whose authors
based the Couchbase design on their earlier work. While many developers
may confuse the two, Couchbase and CouchDB are not the same, rather
Couchbase should be considered as the unique offspring from the developers
of CouchDB and Memcached, sharing DNA from both.

•	 As it evolved, Couchbase has added multiple data access models, including a
SQL++ query service, a Full-Text Search service, an Eventing service, Analytics
aggregation service, and a Backup service. In the Couchbase design, each of these
access models can simultaneously utilize the cluster’s data.

WORKLOAD ISOLATION
•	 	All databases perform different tasks in support of an application. These include

persisting, indexing, querying, aggregating, and searching data. Each of these
workloads has slightly different performance and resource requirements.

•	 �Multi-Dimensional Scaling (MDS) isolates these workloads from one another at
both a process and a node level.

•	 	MDS allows these workloads to be scaled independently from one another and
their resources to be optimized as necessary.

•	 	MDS allows the database to be performance-matched to the performance needs
of the application, and the database to its available infrastructure. For cloud
deployments, it is advantageous from a cost perspective to “red-line” infrastructure
instances before adding them and to avoid idle and under-utilized node instances.

•	 	Couchbase manages the topology, process management, statistics gathering, high
availability, and data movement between these services transparently.

ASYNCHRONOUS APPROACH TO EVERYTHING
•	 Traditional databases increase latency and block application operations while

running synchronous operations, for example, persisting data to disk or
maintaining indexes.

•	 Couchbase allows write operations to happen at memory and network speeds
while asynchronously processing replication, persistence, and index management.

WHITEPAPER 10

•	 Spikes in write operations don’t block read or query operations, while background
processes will persist data as fast as possible without slowing down the rest of
the system.

•	 ACID transactions are available to the developer to ensure durability and
consistency while data is in flight. Multiple transaction options are available
allowing the developer to decide when and where to increase latency in exchange
for durability and consistency of transactions. Somewhat higher latency can be
anticipated as multi-document and cross-collection transactions are implemented.

JSON DATA MODEL AND ACCESS METHODS

This section outlines the foundational JSON data model handling in Couchbase, then
introduces the multiple ways to access that data. These methods include basic key-
value operations, SQL++ querying, full-text searching, real-time analytics, server-side
eventing, and mobile application synchronization.

JSON document data model
The JSON data model supports basic and complex data types: numbers, strings,
nested objects, and arrays. JSON provides rapid serialization and deserialization, is
native to JavaScript, and is the most common REST API data format. Consequently,
JSON is extremely convenient for web application programming.

Couchbase stores data as individual documents, comprised of a key and a value.
When the value is JSON formatted, Couchbase provides rich access capabilities;
when not, the document is stored as a binary BLOB and has more limited access
characteristics. A document often represents a single instance of an application
object (or nested objects). It can also be considered analogous to a row in a relational
table, with the document attributes acting similar to a column. Couchbase provides
greater flexibility than the rigid schemas of relational databases, allowing JSON
documents with varied schemas and nested structures. Developers may express
many-to-many relationships without requiring a reference or junction table.
Subcomponents of documents can be accessed and updated directly as well, and
multiple document schemas can be aggregated together into a virtual table with a
single query.

JSON DOCUMENT FLEXIBILITY
In the Couchbase document model, a schema is the result of an application’s
structuring of its documents and their containment structures such as Buckets,
Scopes, and Collections. Schemas are defined by application developers and
managed by applications. This is in contrast to the relational model where the
database (and the database administrator) manages the schema. Couchbase created
the Bucket-Scope-Collection-Document organizational hierarchy, explained below, so
as to allow maximum flexibility in defining application data meta models. Notice how
easily traditional RDBMS constructs map to those of Couchbase:

WHITEPAPER 11

A single JSON document’s structure offers even more flexibility for the developer
beyond the dynamic nature of Scopes and Collections. A JSON document’s structure
consists of its inner arrangement of attribute-value pairs. For example, both of
the following JSON document examples are valid data models that Couchbase can
manage and query. How the documents are designed or updated over time is up to
the application developer—normalized or denormalized, or a hybrid depending on the
needs and evolution of the application. Using JSON, the developer can avoid lengthy
schema design, testing and deployment cycles of traditional RDBMS-based systems.

Normalized – 4 Documents Denormalized – 1 Documents
invoice1:

{

“BillTo”: “Lynn Hess”,

“InvoiceDate”: “2018-01-15”,

“InvoiceNum”: “ABC123”,

“ShipTo”: “H. Trisler, 41

Oak Drive”

}

invoice1:item1:

{

“InvoiceId”: “1”,

“Price”: “100”,

“Product”: “Brake Pad”,

“Quantity”: “24”

}

invoice1: item2

{

“InvoiceId”: “1”,

“Price”: “10”,

“Product”: “Rotor”,

“Quantity”: “5”
}

invoice1: item3

{

“InvoiceId”: “1”,

“Price”: “20”,

“Product”: “Tire”,

“Quantity”: “2”

}

invoice1:

{

“BillTo”: “Lynn Hess”,

“InvoiceDate”: “2018-01-15”,

“InvoiceNum”: “ABC123”,

“ShipTo”: “H. Trisler, 41 Oak Drive”,

“Items”: [

{ “Price”: “100”, “Product”: “Brake Pad”, “Quantity”: “24” },

{ “Price”: “10”, “Product”: Rotor”, “Quantity”: “5” }

{ “Price”: “20”, “Product”: “Tire”, “Quantity”: “2” }

]

}

Couchbase RDBMS

Bucket

Scopes

Collections

Documents

Key/Value pairs

Database

Schema

Tables

Rows

Cells

WHITEPAPER 12

Couchbase does not enforce uniformity: document structures can vary, even across
multiple documents where each contains a type attribute with a common value.
This allows differences between objects to be represented efficiently. It also allows
a schema to progressively evolve for an application, as required—properties and
structures can be added to the document without other documents needing to
be updated in the same way. This allows applications to change their behavior
without having to overhaul all the source data or take applications offline to make
a basic change.

Document access methods
Managing JSON data is at the core of Couchbase’s document database capabilities,
but there are several ways for applications to access the data. Each of these methods
is described in further detail later in this paper, but the following provides a basic
explanation and coding example of using it.

Access Method Description Example

Key-value

An application provides a document ID
(the key), Couchbase returns the associ-
ated JSON or binary object. The inverse
occurs with a write or update request.

Java:
JsonDocument myAirline =

collection.get(“airline_5209”);

Query
and Analytics

SQL-based query syntax to interact
with JSON data, similiar to relational
databased, returns matching JSON
results. Comprehensive DML, DQL and
DDL syntax supports nested data and
non-uniform schema.

Python:
cluster.query((

“““SELECT fname, lname, age

FROM default

WHERE age > $age

“““, age=22

)

Full-text
Search

Using text analyzers with tokenization
and language awareness, a search is
made for a variety of field and boolean
matching functions. Search returns
document IDs, relevance scoring, and
optional context data.

.NET:
await cluster.SearchQueryAsync(

“fts-index”,

new QueryStringQuery(“sushi”),

options => {

options.Limit(10);

}

);

Eventing

Custom JavaScript functions are execut-
ed within the database as data changes
or based on timers. Support for access-
ing and updating data, writing out to a
log or calling out to an external system.

JavaScript:
function OnUpdate(doc, meta){

log(‘ document’, doc);

doc[“ip_num_start”]=

ip_trim_func(doc[“ip_start”]);

tgt[meta.id]=doc;

WHITEPAPER 13

In addition to the above server functions, data can also be synchronized with mobile
applications. Couchbase Mobile is the end-to-end stack, comprised of Sync Gateway
and Couchbase Lite, an embeddable instance of Couchbase. On a mobile device or
embedded system, data is created, updated, searched, and queried whether online
or offline. The data can then be synchronized with Couchbase Server and used by
both mobile and server-based applications.

Key, values, and sub-documents
Keys and values are fundamental parts of JSON documents and have some limits
that are important to understand.

KEYS
Each value is identified by a unique key, or ID, defined by the user or application
when the item is originally created. The key is immutable: once the item is saved, the
key cannot be changed.

Each key must be a UTF-8 string with no spaces. Special characters, such as (, %, /,
“, and _, are acceptable, but the key may be no longer than 250 bytes and must be
unique within its bucket.

VALUES
The maximum size of a value is 20 MB. Each document consists of one or more
attributes, each of which has its own value. An attribute’s value can be a basic type,
such as a number, string, or boolean; or a complex type, such as an embedded
document or an array.

JSON documents can be parsed, indexed, and queried by other Couchbase services.
A value can also be any form of binary, though it won’t be parsed, indexed, or
queried.

SUB-DOCUMENTS
A sub-document is an inner component of a JSON document. The sub-document API
uses a path syntax to specify attributes and array positions to read/write. This makes
it unnecessary to transfer entire documents over the network when only partial
modifications are required.

Couchbase
Mobile

Couchbase Lite SDK provides com-
mon create, update, and delete
tasks as well as query, full-text
search, and triggers on the device.

Sync Gateway keeps data updated
with a Couchbase Server database
and other devices.

Java:
MutableDocument mutableDoc = new

MutableDocument()

.setString(“version”, “2.0”)

.setString(“type”, “SDK”);

database.save(mutableDoc);

Swift (iOS):
let newDoc = MutableDocument()

.setString(2.0, forKey: “version”)

.setString(“SDK”, forKey: “type”)

try database.saveDocument(newDoc)

WHITEPAPER 14

Key organizing concepts for documents

FLEXIBLE, DYNAMIC DATA CONTAINMENT MODEL
Couchbase offers a flexible multi-level data containment and organization structure
to organize documents, which helps optimize cluster performance and facilitate
horizontal scaling. This data containment model consists of four levels: Buckets,
Scopes, Collections, and Documents, and maps easily to familiar RDBMS constructs
of databases, schema, tables, and rows. The model structure is further explained
below:

•	 Buckets: The topmost container in Couchbase is the Bucket. One or many Buckets
can be defined and assigned to a Couchbase cluster. A Bucket is the logical
equivalent of a database in relational systems.

•	 vBuckets: Virtual Buckets are how Couchbase creates and uses its data location
map, by segmenting a bucket into 1024 vBuckets. vBuckets are distributed across
nodes in a cluster and replicated for availability and redundancy.

•	 Ephemeral buckets: Ephemeral buckets exist in memory only. This allows
the database to support applications where data is processed, but not
permanently persisted.

•	 Scope: Scopes are an intermediate data organization structure similar to a
relational database schema. Scopes are defined by the collections of documents
that they contain or can access.

•	 Collections: Collections are categorical or logically organized groups of
documents. The premise of Collections is to behave as traditional table structures.
Most group-oriented access activities are processed at the Collection-level, to
minimize full-database operations, simplify replication logic and streamline
indexing options.

{
“age”: 21,
“fav_drinks”: {
“soda”: [“fizzy”, “lemon”]
}
“addresses”: [
{ “street”: “pine” },
{ “street”: “maple” }
]
}

Path Example Result

age –
a numeric value

21

fav_drinks.soda –
an array of strings

fizzy,
lemon

fav_drinks.soda[0] –
first string in array

fizzy

addresses[1].street –
string value in second part of array

maple

COUCHBASE OFFERS A

FLEXIBLE MULTI-LEVEL

DATA CONTAINMENT AND

ORGANIZATION STRUCTURE

TO ORGANIZE DOCUMENTS,

WHICH HELPS OPTIMIZE

CLUSTER PERFORMANCE AND

FACILITATE HORIZONTAL

SCALING.

WHITEPAPER 15

BUCKETS
Buckets hold scopes, collections, and JSON documents—these are the primary
organizing structures in Couchbase. Applications connect to a specific bucket that
pertains to their application scope, applications query data by inquiring about
documents within collections inside that scope. Memory quotas are managed on
a per-bucket and per-service basis. Security roles are applied to users with various
bucket-level, scope-level, collection-level, and document-level constraints.

In addition to standard Couchbase buckets, there are two specialized bucket types
useful for different use cases. Ephemeral buckets do not persist data but allow highly
consistent in-memory performance, without disk-based fluctuations. This delivers
faster node rebalances and restarts.

Memcached buckets also do not persist data. It is a legacy bucket type designed to
be used alongside other database platforms specifically for in-memory distributed
caching. Memcached buckets lack most of the core benefits of Couchbase buckets,
including compression.

VBUCKETS
vBuckets are shards or partitions of data (and replicas) that are automatically
distributed across nodes. Couchbase automatically segments buckets into 1024
vBuckets. They are managed internally by Couchbase and not interacted with directly
by the user. The Couchbase SDK automatically distributes data and workloads across
vBuckets using this information as the data location map for the application.

SCOPES
Scopes are a mid-level organizing structure in Couchbase that simplifies support for
isolating data and access to that data for the purposes of supporting concepts such
as multi-tenancy or separating departmental access to sensitive data.

COLLECTIONS
Collections offer a similar construct to relational tables, in that they contain
documents that are alike. Collections level processing enables Couchbase to isolate
operations on smaller data sets, hence improving performance. Indexes are built
and managed at the collection level, for example, making queries not only fast
but portable. Data sharding and rebalancing is also a collection-level operation.
Collections, like tables, can be joined and filtered.

DOCUMENTS
Documents are the foundational construct of Couchbase and conform to JSON
structural standards.

WHITEPAPER 16

Cluster design concepts

NODES
Couchbase nodes are physical or virtual machines that host single instances of
Couchbase Server. Multiple instances of Couchbase Server cannot be installed
on a node.

CLUSTERS
A cluster consists of one or more nodes running Couchbase Server. Nodes can
be added or removed from a cluster. Replication of data occurs between nodes
and cross datacenter replication occurs between different clusters that are
geographically distributed.

SERVICES
The core of Couchbase is the Data Service that feeds and supports all the other
systems and data access methods. There are multiple services that offer different
types of data access or processing including: Query, Indexing, Backup, Full Text
Search, Analytics, and Eventing. A service is an isolated set of processes dedicated
to particular tasks. For example, indexing, search, or querying are each managed
as separate services. One or more services can be run on one or more nodes
as needed.

COUCHBASE SERVICES

Couchbase implements the above data access methods through a set of dedicated
services, with the Data Service at its center. Each service has its own resource quotas
and, where applicable, related indexing and inter-node communication capabilities.
This provides several very flexible methods to scale services when needed—not just
scaling up to larger machines or scaling out to more nodes. Couchbase provides
both options, as well as the ability to scale specific services independently from one
another. Multi-dimensional scaling is covered in a later section but is the foundation
for Couchbase workload isolation and scaling capabilities.

This is different than other platforms where a monolithic set of services are installed
on every node in a cluster. Instead, Couchbase uses a core data capability that then
feeds all the other services. A shared-nothing architecture allows developer control
over workload isolation. Small scale environments can share the same workloads
across one or more nodes, while higher scale and performance can be achieved with
dedicated nodes to handle specific workloads—the ultimate in scale-out flexibility.
The cluster can be scaled in or out and its service topology changed on demand with
zero interruption or change to the application.

Applications communicate directly with each service through a common SDK that
is always aware of the topology of the cluster and how services are configured.
Developers do not have to know anything about how the services and nodes are
configured, the SDK gets all the information it needs from the cluster manager.
The same application can be deployed against a cluster of any size or configuration

A SHARED-NOTHING

ARCHITECTURE ALLOWS

DEVELOPER CONTROL

OVER WORKLOAD

ISOLATION.

WHITEPAPER 17

without changing its behavior. Having this knowledge built into the SDK results in
reduced latency (direct application to database access) and less complexity (no proxy
or router components), better performance, and simplified auto-scaling.

The core data service handles all the document mutations and streams them to all
the related services described below. The remainder of this section walks through
each service and describes how they work on a node, in a cluster, and with
each other.

Later in this paper, the Distributed Foundation section will discuss inter-node
connectivity, data flow, cluster topology, and data streaming.

Data Service and Key/Value Engine
The Data Service is the foundation for storing data in Couchbase Server. It must run
on at least one node of every cluster, and it is responsible for caching, persisting,
and serving data to applications and other services within the cluster. The principal
component of the data service architecture is the key-value management system
known simply as the KV Engine.

KV engine is composed of a multi-threaded, append-only storage layer on disk with a
tightly integrated managed object cache. The cache provides consistent low latency
for individual document read and write operations and streams documents to other
services via DCP.

Each node running the data service has its own KV engine process and is responsible
for persisting and caching a portion of the overall dataset (both active and replica).

COUCHSTORE AND COUCHBASE MAGMA, HIGH DATA-DENSITY STORAGE
Couchbase has also introduced a new storage engine format which is defined as
buckets are created. Users may choose between the original Couchstore or the
new high density storage engine, Magma. High-density storage is the long-term
preferred storage engine for the KV engine. High-density storage has both compute
and storage separation advantages, performance processing is up to 4x faster
while utilizing up to 10x less memory, and storage capacity holds 3x larger data sets
per node. (from 3TB to 10TB per cluster node). These advantages result in smaller
affordable clusters, holding and processing more data, with higher processing
throughput power.

Magma combines the performance of a log-structured merge trees (LSM) with the
compaction, reorganizability, and immutability of sorted string tables (SSTables)
to provide a high performance in a well organized, low latency engine that suits
write-heavy, low latency point lookup workloads. This design minimizes disk space
increases, called “storage amplifications,” and the accompanying complexity which
occurs when documents are heavily mutated without being reorganized.

MANAGED OBJECT CACHE
The managed object cache of each node hashes the document into an in-memory
hash table based upon the document ID (key). The hash table stores the key, the
value, and some meta data associated with each document. Since the hash table
is in memory and lookups are fast, it offers a quick way of detecting whether the
document exists in memory or not.

WHITEPAPER 18

The cache is both read-through and write-through: if a document being read is not in
the cache, it is fetched from disk, and write operations are written to disk after being
first stored in memory.

Disk fetch requests are batched to the underlying storage engine, and corresponding
entries in the hash table are filled. After the disk fetch is complete, pending client
connections are notified of the asynchronous I/O completion so that they can
complete the read operation.

DOCUMENT EXPIRATION
Documents may also be set to expire using a time to live (TTL) setting. By default, all
documents have a TTL of 0, meaning the document will be kept indefinitely. When
you add, set, or replace a document, you can specify a custom TTL, at which time
the document becomes unavailable and is marked for deletion (tombstone) to be
cleaned up later.

MEMORY MANAGEMENT
To keep memory usage of the cache under control, Couchbase employs a
background task called the item pager. This pager runs periodically (to clean up
expired documents) as well as being triggered based on high and low watermarks
of memory usage. This high watermark is based on the memory quota for a given
bucket and can be changed at runtime. When the high watermark is reached, the
item pager scans the hash table, ejecting eligible (persisted) items that are not
recently used (NRU). It repeats this process until memory usage falls below the low
watermark.

COMPRESSION
End-to-end data document compression is available across all features of the
database using the open source Snappy library. Client capabilities, and the
compression mode configured for each bucket, determine how compression will run.

Data can optionally be compressed by the client (SDK) prior to writing into a bucket,
within memory of the bucket and on disk. It is also compressed between nodes of
the cluster and to remote clusters.

COMPRESSION MODES
Data is always compressed on disk, but each client and bucket can control whether it
is also compressed on the wire and/or in memory. The SDKs communicate whether
they will be sending or requesting compressed documents, and the compression
mode of the bucket determines what happens within the database. The modes are
as follows:

Off – Documents are actively decompressed before storing in memory. Clients
receive the documents uncompressed.

Passive – Documents are stored in memory both compressed and uncompressed
in memory, depending on how the client has sent them. Clients receive compressed
documents if they are able and uncompressed if they are not.

Active – Documents are actively compressed on the server, regardless of how they
were received. Clients receive compressed data whenever it is supported by the
client, even if it originally sent uncompressed data.

WHITEPAPER 19

COMPACTION
Couchbase writes all data that you append, update, and delete as files on disk.
This can eventually lead to gaps in the data file, particularly when you delete data.
You can reclaim the empty gaps in all data files by performing a process called
compaction. For both data files and index files, perform frequent compaction of
the files on disk to help reclaim disk space and reduce disk fragmentation. Auto-
compaction is enabled by default for all buckets, but parameters can be adjusted for
the entire cluster or for a specific bucket in a cluster.

MUTATIONS
In Couchbase Server, mutations happen at a document level. Clients retrieve the
entire document from the server, modify certain fields, and write the document
updates back to Couchbase.

When Couchbase receives a request to write a document, the following occurs:

1.	 Every server in a Couchbase cluster has its own managed object cache. The client
writes a document into the cache, and the server sends the client a confirmation.
By default, the client does not have to wait for the server to persist and replicate
the document as it happens asynchronously.

2.	 The document is added into the intra-cluster replication queue to be replicated
to other servers within the cluster.

3.	 The document is added into the disk-write queue to be asynchronously persisted
to disk. The document is persisted to disk after the disk-write queue is flushed.

4.	 After the document is persisted to disk, it’s replicated to other clusters using
XDCR and eventually indexed.

Doc 1

Doc 1

Doc 1

APP

Replication
Queue

Disk

To other
nodes/ clusters

Managed Cache

NODE 1

D
is

k
Q

u
eu

e
Couchbase Server Asynchronous Architecture

WHITEPAPER 20

Key-value data access
While Couchbase is a document database, at its heart is a distributed key-value (KV)
store. A KV store is an extremely simple, schema-less approach to data management
that, as the name implies, stores a unique ID (key) together with a piece of arbitrary
information (value); it may be thought of as a hash map or dictionary.

The KV store itself can accept any data, whether it be a binary BLOB or a JSON
document, and Couchbase features such as the SQL++ query service make use of the
KV store’s ability to process JSON documents.

Due to their simplicity, KV operations execute with extremely low latency, often
sub-millisecond. The KV store is accessed using simple CRUD (Create, Read, Update,
Delete) APIs, and provides the simplest interface when accessing documents using
their IDs.

The KV store contains the authoritative, most up-to-date state for each item. Query,
and other services, provide eventually consistent indexes, but querying the KV store
directly will always access the latest version of data. Applications use the KV store
when speed, consistency, and simplified access patterns are preferred over flexible
query options.

All KV operations are atomic, which means that Read and Update are individual
operations. In order to avoid conflicts that might arise with multiple concurrent
updates to the same document, applications may make use of Compare-And-Swap
(CAS), which is a per-document checksum that Couchbase modifies each time a
document is changed.

Query service
The query service is an engine for processing SLQ++ (previously named, N1QL)
queries and follows the same scalability paradigm that all the services use which
allows, allowing the user to scale query workloads independently of other services
as needed.

Couchbase SQL++, (SQL for JSON), combines the flexibility of JSON with the
expressive power of SQL. Couchbase SQL++ is an original implementation of the
SQL++ standard. SQL++ enables clients to access data from Couchbase using
SQL-like language constructs. It includes a familiar data definition language (DDL),
data manipulation language (DML), and query language statements, but can operate
in the face of NoSQL database features such as key-value storage, multi-valued
attributes, and nested objects.

SQL++ provides a rich set of features that let users retrieve, manipulate, transform,
and create JSON document data. Its key features include a powerful SELECT
statement that extends the functionality of the SQL SELECT statement to work with
JSON documents. Of particular importance are the USE KEYS, NEST, and UNNEST
sub-clauses of the FROM clause in SQL++ as well as the MISSING boolean option in
the WHERE clause.

SQL++ PROVIDES A RICH SET

OF FEATURES THAT LET USERS

RETRIEVE, MANIPULATE,

TRANSFORM, AND CREATE

JSON DOCUMENT DATA.

https://www.couchbase.com/sqlplusplus

WHITEPAPER 21

The following examples illustrate three sample queries—showing common SQL
capabilities and the JSON responses.

ACID TRANSACTIONS IN SQL++
Couchbase supports the ability to define ACID transactions within SQL++.
Transactions can be applied to one or more documents, and can span one or more
collections and across cluster nodes. Due to the guarantees required by ACID,
transactions may execute more slowly than non-transactional queries in Couchbase,
but this flexibility is available to the developer. Transactions in SQL++ have adopted a
near identical syntax to SQL for relational databases.

SQL++ supports standard
SELECT, FROM, WHERE,
GROUP BY clauses as well as
JOIN capabilities

SELECT c.name, o.order_date

FROM customers AS c

LEFT OUTER JOIN orders AS o

ON c.custid = o.custid

WHERE c.custid = “C41”;

{

“results”: [

{

“name”: “R. Duvall”,

“order _ date”: “2017-09-02”

}

]

}

Use UNNEST to extract
individual items from a
nested JSON array

SELECT o.orderno,

i.itemno AS item_number,

i.qty AS quantity

FROM orders AS o

UNNEST o.items AS i

WHERE i.qty > 100;

{

“results”: [

{

“orderno”: 1002,

“item _ number”: 680,

“quantity”: 150

},

{

“orderno”: 1005,

“item _ number”: 347,

“quantity”: 120

},

{

“orderno”: 1006,

“item _ number”: 460,

“quantity”: 120

}

]

}

Use MISSING boolean
keyword in WHERE clause
to adapt queries when a
schema has changed or
lacks specific keys

SELECT o.orderno, SUM(o.cost) AS

cost

FROM orders AS o

WHERE o.cost IS NOT MISSING

GROUP BY o.orderno;

{

“results”: [

{

“orderno”: 1002,

“cost”: 220

},

{

“orderno”: 1005,

“cost”: 623

}

]

}

WHITEPAPER 22

COMPARE SQL TRANSACTIONS TO COUCHBASE SQL++

Transactions can also be built into and managed by the application using the Java SDK.

COST-BASED QUERY OPTIMIZATION
The query service uses a cost-based query optimizer to take advantage of indexes that
are available. Index nodes can handle much of the data aggregation pipeline as well, so
that less data is sent back to the query node for processing. Cost-based optimization
for queries accessing JSON structures was patented by Couchbase in 2021.

Index service
Secondary indexing is an important part of making queries run efficiently and
Couchbase provides a robust set of index types and management options. The index
service is responsible for all of the maintenance and management tasks of indexes,
known as Global Secondary Indexes (GSI). The index service monitors document
mutations to keep indexes up to date, using the database change protocol stream
(DCP) from the data service. It is distinct from the query service, allowing their
workloads to be isolated from one another where needed.

The following is a sample of some of the types of indexes supported by the
index service:

•	 Primary – indexes whole bucket or collection using the document key

•	 Secondary – indexes a scalar, object, or array using a key-value

•	 Composite/Covered – multiple fields stored in an index or an array index

•	 Functional – secondary index that allows functional expressions instead of a
simple key-value

•	 Array – an index of array elements ranging from plain scalar values to complex
arrays or JSON objects nested deeper in the array

•	 Adaptive – secondary array index for all or some fields of a document without
having to define them ahead of time

•	 Flex – Flex indexes are used for queries containing compound selection criteria
such as those derived from form-base applications with multi-select options. Flex
Index uses the inverted indexes from the Full Text Search engine to accommodate
unknown values.

Typical RDBMS Couchbase 7

START TRANSACTION;

UPDATE customer SET balance + 100 WHERE cid = 4872;

SELECT cid, name, balance FROM customer;

SAVEPOINT s1;

UPDATE customer SET balance = balance – 100 WHERE cid = 1924;

SELECT cid, name, balance FROM customer;

ROLLBACK WORK TO SAVEPOINT s1;

SELECT cid, name, balance FROM customer;

COMMIT;

START TRANSACTION;

UPDATE customer SET balance = balance + 100 WHERE cid = 4872;

SELECT cid, name, balance FROM customer;

SAVEPOINT s1;

UPDATE customer SET balance = balance – 100 WHERE cid = 1924;

SELECT cid, name, balance FROM customer;

ROLLBACK WORK TO SAVEPOINT s1;

SELECT cid, name, balance FROM customer;

COMMIT;

WHITEPAPER 23

Index Advisor
Is a built-in query command, ADVICE, that interrogates the database for which index
or GSI to use or build given the object and predicate selections contained in the
query statement.

QUERY CONSISTENCY
Under the hood, Couchbase indexes are updated asynchronously after the data has
been changed by the application. In comparison to other database technologies,
this allows for much higher write throughput but introduces the possibility of
inconsistency between the data and its indexes. Couchbase therefore provides
several levels of control over query consistency, allowing the application to choose
between faster queries (ignoring pending mutations) and stronger consistency.

The following consistency levels are specified per-query, allowing for even finer
grained and dynamic control of these trade offs:

•	 not_bounded (default) – Return the query response immediately, knowing that
some data may still be flowing through the system. This consistency level is useful
for queries that favor low latency over consistency.

•	 at_plus – Block the query until its indexes have been updated to the timestamp
of the last update, knowing that some updates may have happened since but
don’t need to be consistent. This is for “read-your-own-write” semantics by a single
application process/thread.

•	 request_plus – Block the query until its indexes are updated to the timestamp
of the current query request. This is a strongly consistent query and is used to
maintain consistency across applications/processes. Indexes are updated as fast as
possible, regardless of query consistency requirements. Even a query requesting
strong consistency may return extremely quickly if its indexes are not processing
large volumes of updates.

Data Service

Data Service Node

DCP
streaming

bucket 1 bucket 2

Projector and Router

Index Service Node

Index 1

Index 3 Index 4

Index 2

Query Service

Query Service Node

Index Service

Supervisor

Index 5 Index 6

WHITEPAPER 24

MEMORY-OPTIMIZED INDEXES (MOI)
Memory-optimized indexes use a skip list structure as opposed to B-tree indexes,
optimizing memory consumption and concurrent processing of index updates and
scans. MOI provide the most optimized index for processing high-velocity mutations
and high-frequency scans. MOI is essentially “in-memory” and therefore requires
enough RAM to store all indexes.

Search service
The Search service is an engine for performing Full-Text Searches (FTS) on the JSON
data stored within a bucket or a collection. FTS lets you create, manage, and query
inverted indexes for searching of free-form text within a document. The service
provides analyzers that perform several types of operations including multi-language
tokenization, stemming, and relevance scoring.

Search nodes incorporate both an indexer and query processor, much like the query
and index services, except these don’t run on separate nodes – both workloads run
on each search node.

As with the other services, data nodes use the DCP stream to send mutations to the
FTS indexer process for index updating whenever data changes. Index creation is
highly configurable through a JSON index definition file, Couchbase SDK, or through
a graphical web interface as part of the administration console.

Documents can be indexed differently depending on a document type attribute, a
document ID, or the value of a designated attribute. Each index definition can be
assigned its own set of analyzers and specific analyzers can be applied to indexes for
a subset of fields.

Indexes are tied to a specific bucket or collection, but it is possible to create virtual
index aliases that combine indexes from multiple buckets or collections into a single
seamless index. These aliases also allow application developers to build new indexes
and quickly change over to new ones without having to take an index offline.

Searching and indexing use the same set of analyzers for finding matching data. All
data, when indexed, flows through the analyzer steps as defined by the index. Then
search requests are received and passed through the same steps – for example,
tokenization, removing stop words, and stemming terms. These analyzed search
requests are then looked up by the indexer in the index and matches are returned.
The results include the source request, list of document IDs, and relevance scoring.

Other indexing and search-time options provide fine-grained control over indexing
more or less information depending on the use case. For example, text snippets may
also be stored in the index and included in the search response so that retrieving full
documents from the data service is not required.

Couchbase developed Bleve, the open source, Go-based search project, for the FTS
capabilities, including language support, scoring, etc.

WHITEPAPER 25

Eventing service
The eventing service supports custom server-side functions (written in JavaScript)
that are automatically triggered using an Event-Condition-Action model. These
functions receive data from the DCP stream for a particular bucket or collection
and execute code when triggered by data mutations. Similar to other services, the
eventing service scales linearly and independently.

Eventing service offers both “change data capture” like features found in event
handlers as well as multi-channel data streaming features found in solutions such as
Apache Kafka.

Code processes the source data and commits it as a new or updated document in
another bucket.

The core of eventing functions is a Google V8 execution container. Functions inherit
support for most of the standard ECMAScript constructs that are available through
V8. Some capabilities have been removed to support the ability to shard and scale
execution automatically. Additionally, to optimize language utilization of the server
environment, some new constructs have been added.

Code for functions is written in a web-based JavaScript code editor and features an
extensive in-browser debugging environment.

Analytics
The analytics service provides an ad hoc querying capability without the need for
indexes, bringing a hybrid operational and analytical processing (HOAP) model for
real-time and operational analytics on the active JSON data within Couchbase. It uses
the same SQL++ language as the query service.

It is designed to efficiently run complex queries over a large number of documents,
including query features such as ad hoc joins, set, aggregation, and grouping
operations. In a typical operational or analytical database, any of these kinds of
queries may result in inefficiencies: long running queries, I/O constraints, high

WHITEPAPER 26

memory consumption, and/or excessive network latency due to data fetching and
cross-node coordination.

Because the service supports efficient parallel query processing and bulk data
handling, and runs on separate nodes, it is often preferable for expensive queries,
even if the queries are predetermined and could be supported by an operational
index. With traditional database technology it is important to segregate operational
and analytic workloads. This is usually done by batch exporting of data from
operational databases into an analytic database or warehouse that does further
processing. Couchbase provides both the operational database as well as a scalable
analytics database—all in one NoSQL platform.

Data is pushed from the DCP stream into what are known as shadow buckets—
copies of data that are processed and immediately ready for analysis by a dedicated
massively parallel processing (MPP) analytics engine. As shadowed data is linked
directly to the operational data in real time, queries do not affect the performance
of that operational data. You can add more analytics nodes to reduce analytics
query time.

The Couchbase Analytics approach has significant advantages compared to the
commonly employed alternatives:

Common data model – supports the same flexible document data model and
schema used for operational data with no transformation required for analysis.

Workload isolation – operational query latency and throughput are protected from
slowdowns due to your analytical query workload—but without the complexity of
operating a separate analytical database.

High data freshness – the DCP stream provides a fast memory-to-memory protocol
that nodes use to synchronize data among themselves, allowing analytics to run on
data that’s extremely current, without extract/load or other hassles and delays.

Real-time Insights
for Business TeamsFast Ingest

Shadow Dataset of
a Couchbase Bucket

Complex Queries
on Large Datasets

MPP Architecture:
Parallelization Among

Core and Servers

THE COUCHBASE ANALYTICS

APPROACH HAS SIGNIFICANT

ADVANTAGES COMPARED TO

THE COMMONLY EMPLOYED

ALTERNATIVES.

WHITEPAPER 27

High availability – The Analytics service supports failover and recovery to provide
high availability for its execution.

Native Tableau integration – Analysts can examine the results of SQL++ queries in
Tableau, a popular business intelligence and visualization tool.

Integrations with data processing and data pipeline tools.

Consolidation from multiple Couchbase Clusters Analytics service can link to active
data among multiple Couchbase clusters, and be configured as an “Analytic cluster”
who’s sole purpose is to perform analysis upon data provided from other clusters.

Remote links allow data ingestion from standard data files stored in AWS S3,
including Parquet file formats, in Microsoft Azure Blob storage, or from Google
Cloud storage. This allows analysts to enrich the analytic data set without requiring
expensive ETL exercises.

Mobile and the edge App Services
Couchbase Mobile brings the power of a NoSQL database beyond the edge. It
includes Couchbase Lite, an embedded NoSQL JSON document store that supports
a SQL-based query API and a C API, plus Sync Gateway, a synchronization gateway
service responsible for synchronizing data across clients and the cloud, and for
enforcing access control policies, authentication, authorization, and data routing.
With Couchbase Mobile you can build offline-first mobile applications that are
responsive and always available with enterprise-grade end-to-end security
and scalability.

Client

Lightweight embedded NoSQL
database with full CRUD and

query functionality.

Built-in enterprise-level security throughout the entire stack includes user authentication,
data access control, secure transport, and full database encryption.

Secure web gateway with
synchronization, data access, and

data integration APIs for accessing,
integrating, and synchronizing

data over the web.

Highly scalable, highly available,
high performance NoSQL

database server.

COUCHBASE LITE SYNC GATEWAY COUCHBASE SERVER

Middle Tier

Security

LANWAN Storage

WHITEPAPER 28

Couchbase Mobile has several important features that help to build powerful
applications with embedded databases:

Offline and offline-first – allows applications to be always on, and able to run and
store data on device until the network becomes available again. Once restored,
devices can sync back to the cloud datacenter.

Peer-to-peer synchronization – connect and exchange data between mobile
devices when there is unreliable network connectivity; keep working regardless of
network availability.

Delta sync – significantly reduces network bandwidth by only synchronizing changed
data. Used between applications and Sync Gateway, or between clients using peer-
to-peer synchronization.

Client SDKs – Couchbase Lite supports applications written in C, Objective-C, Java,
Swift, and Kotlin. Couchbase Lite runs on Linux, Windows, iOS, and Android.

Data recovery on the edge – on-device replicas provide high availability and
disaster recovery on edge devices. Recover data from a damaged device to a backup.

On-device encryption – delivers end-to-end security to business-critical mobile apps
by encrypting the local embedded database to better protect data at rest.

Deploy on premises and in any cloud – enterprise users can deploy the same stack
on premises or in the cloud so developers and QA teams can be more productive.
Support hybrid cloud deployments for edge devices operating autonomously without
limited connectivity.

Multi-platform – Couchbase Lite is supported on iOS, Android, and .NET, including
desktop and Windows mobile apps. The powerful SQL-based fluent query API allows
developers to implement powerful business logic within their mobile apps.

DISTRIBUTED FOUNDATION

The foundation of Couchbase is a clustering approach that provides flexible options
for scaling while maintaining performance and availability. This scaling approach
is applied across all levels of the cluster, providing high-performance flexibility for
nodes, services, buckets, and vBuckets, scopes, and collections.

Node-level architecture
A Couchbase cluster consists of a group of interchangeable, largely self-sufficient
nodes that operate in a peer-to-peer topology. There is just one Couchbase node
type, though the services running on that node can be managed as required
(see Multi-Dimensional Scaling).

WHITEPAPER 29

Having a single-node type greatly simplifies the installation, configuration,
management, and troubleshooting of a Couchbase cluster, both in terms of what
you must do as a human operator and what the automatic management needs to
do. There is no concept of master nodes, slave nodes, config nodes, name nodes, or
head nodes.

Components of a Couchbase node include the cluster manager and, optionally, the
data, query, index, analytics, search, eventing, and backup services. There is also
the underlying managed cache and storage components. By dividing up potentially
conflicting workloads in this way, a Couchbase node can achieve maximum
throughput and resource utilization and minimum latency.

Nodes can be added or removed easily through a rebalance process, which
redistributes the data evenly across all nodes. The rebalance process is done online
and requires no application downtime, and can be initiated at the click of a button or
one command on the command line.

Couchbase Server is typically deployed on a cluster of commodity servers, virtual
machines, or cloud instance. Although for development purposes, all functionality
can be run on a single node. An application can be developed on a small scale, even
on a laptop, and then deployed to a distributed cluster without any architecture or
behavioral changes to that application.

Capacity can be increased or decreased simply by adding or removing nodes. In this
way a cluster can grow CPU, RAM, disk, and network capacity by adding physical
servers or virtual machines that have the exact same software installed.

The maximum capacity managed by a single node can be up to 10TB using high-
density storage engine and allowing the storage capacity to exceed the node’s
memory size. Memory sizing and allocation also effect the processing capacity of
a node, as do the performance requirements of the services it hosts. Maximum
manageable capacity of nodes running versions earlier than Couchbase Server 7.1
may support up to 3TB of data.

Cluster architecture
A cluster consists of one or more instances of Couchbase Server, each running on an
independent node. Data and services are shared across the cluster.

The following figure shows application servers communicating with the cluster
overall, but because they are also aware of the individual node topology, they can
adapt as needed. For example, if a replica needs to be read, the application server
can access it directly because it knows about the overall cluster configuration.

WHITEPAPER 30

The various services that Couchbase provides are also fed data through the DCP
stream, which is internally used for sending new/changed data to these services as
well as providing the basis for keeping data in sync between nodes in the cluster.

CLUSTER/NODE CONFIGURATION
When Couchbase is being configured on a node, it can be specified either as its
own, new cluster, or as a participant in an existing cluster. Thus, once a cluster
exists, successive nodes can be added to it. When a cluster has multiple nodes,
the Couchbase cluster manager runs on each node: this manages communication
between nodes, and ensures that all nodes are healthy.

Services can be configured to run on all or some nodes in a cluster, and can be
added/removed as warranted by established performance needs. For example,
given a cluster of five nodes, a small dataset might require the data service on only
one of the nodes; a large dataset might require four or five. Alternatively, a heavy
query workload might require the query service to run on multiple nodes, rather
than just one. This ability to scale services individually promotes optimal hardware
resource utilization.

CLUSTER MANAGER
The cluster manager supervises server configuration and interaction between
servers within a Couchbase cluster. It is a critical component that manages
replication and rebalancing operations in Couchbase. Although the cluster manager
executes locally on each cluster node, it elects a clusterwide orchestrator node to
oversee cluster conditions and carry out appropriate cluster management functions.

If a machine in the cluster crashes or becomes unavailable, the cluster orchestrator
notifies all other machines in the cluster, and promotes to active status all the replica
partitions associated with the server that’s down. The cluster map is updated on all

CLUSTER MAP

CLIENT LIBRARY

APPLICATION SERVER APPLICATION SERVER

Server Cluster

CLUSTER MAP

CLIENT LIBRARY

Couchbase Server 1

Data Service

Cluster
Manager

Index Service

Managed Cache

Storage

Query Service

Search Service

Couchbase Server 2

Data Service

Cluster
Manager

Index Service

Managed Cache

Storage

Query Service

Search Service

Couchbase Server 3

Data Service

Cluster
Manager

Index Service

Managed Cache

Storage

Query Service

Search Service

Couchbase Server 4

Data Service

Cluster
Manager

Index Service

Managed Cache

Storage

Query Service

Search Service

Couchbase Server 5

Data Service

Cluster
Manager

Index Service

Managed Cache

Storage

Query Service

Search Service

Couchbase Server 6

Data Service

Cluster
Manager

Index Service

Managed Cache

Storage

Query Service

Search Service

WHITEPAPER 31

the cluster nodes and the clients. This process of activating the replicas is known as
failover. You can configure failover to be automatic or manual. Additionally, you can
trigger failover through external monitoring scripts via the REST API.

If the orchestrator node crashes, existing nodes will detect that it is no longer
available and will elect a new orchestrator immediately so that the cluster continues
to operate without disruption.

In addition to the cluster orchestrator, there are three primary cluster manager
components on each Couchbase node:

The heartbeat watchdog – periodically communicates with the cluster orchestrator
using the heartbeat protocol, providing regular health updates for the server. If the
orchestrator crashes, existing cluster server nodes will detect the failed orchestrator
and elect a new orchestrator.

The process monitor – monitors local data manager activities, restarts failed
processes as required, and contributes status information to the heartbeat process.

The configuration manager – receives, processes, and monitors a node’s local
configuration. It controls the cluster map and active replication streams. When the
cluster starts, the configuration manager pulls configuration of other cluster nodes
and updates its local copy.

Client connectivity
To talk to all the services of a cluster, applications use the Couchbase SDK. Support
is available for a variety of languages including Java, Scala, .NET, PHP, Python, Go,
Node.js, and C/C++. These clients are continually aware of the cluster topology
through cluster map updates from the cluster manager. They automatically send
requests from applications to the appropriate nodes for KV access, query, etc.

When creating documents, clients apply a hash function (CRC32) to every document
that needs to be stored in Couchbase, and the document is sent to the server where
it should reside. Because a common hash function is used, it is always possible for a
client to determine on which node the source document can be found.

Cluster map

Node 1

COUCHBASE SERVER CLUSTER

Node 2 Node 3

1 2 3 1024

vBucket/Partition ID

Doc ID/Key

CRC32

WHITEPAPER 32

TOPOLOGY-AWARE CLIENT
After a client first connects to the cluster, it requests the cluster map from the
Couchbase cluster and maintains an open connection with the server for streaming
updates. The cluster map is shared with all the servers in a Couchbase cluster
and with the Couchbase clients. Data flows from a client to the server using the
following steps:

1.	 An application interacts with an application, resulting in the need to update or
retrieve a document in Couchbase Server.

2.	 The application server contacts Couchbase Server via the smart client SDKs.

3.	 The client SDK takes the document that needs to be updated and hashes its
document ID to a partition ID. With the partition ID and the cluster map, the client
can figure out on which server and on which partition this document belongs.
The client can then update the document on this server.

4.	 When a document arrives in a cluster, Couchbase Server replicates the
document, caches it in memory and asynchronously stores it on disk.

Data transport via Database Change Protocol (DCP)
DCP is the protocol used to stream bucket-level mutations. It is used for high-speed
replication of data as it mutates – to maintain replica vBuckets, global secondary
indexes, full-text search, analytics, eventing, XDCR, and backups. Connectors to
external services, such as Elasticsearch, Spark, or Kafka are also fed from the
DCP stream.

DCP is a memory-based replication protocol that is ordering, resumable, and
consistent. DCP stream changes are made in memory to items by means of a
replication queue.

An external application client sends the operation requests (read, write, update,
delete, query) to access or update data on the cluster. These clients can then receive
or send data to DCP processes running on the cluster. External data connectors, for
example, often sit and wait for DCP to start sending the stream of their data when
mutations start to occur.

Whereas an internal DCP client, used by the cluster itself, streams data between
nodes to support replication, indexing, cross datacenter replication, incremental
backup, and mobile synchronization. Sequence numbers are used to track each
mutation in a given vBucket, providing a means to access data in an ordered manner
or to resume from a given point in time.

Multi-Dimensional Scaling (MDS)
Couchbase MDS features improve performance and throughput for mission-critical
systems by enabling independent scaling of data, query, and indexing workloads.
Scale-out and scale-up are the two scalability models typical for databases—
Couchbase takes advantage of both. There are unique ways to combine and mix
these models in a single cluster to maximize throughput and latencies. With MDS,
admins can achieve both the existing homogeneous scalability model and the newer
independent scalability model.

COUCHBASE MDS FEATURES

IMPROVE PERFORMANCE

AND THROUGHPUT FOR

MISSION-CRITICAL SYSTEMS

BY ENABLING INDEPENDENT

SCALING OF DATA, QUERY,

AND INDEXING WORKLOADS.

WHITEPAPER 33

HOMOGENEOUS SCALING MODEL
To better understand the multi-dimensional scaling model, it is beneficial to take a
look at a typical homogeneous scaling model.

In this model, application workloads are distributed equally across a cluster made up
of the homogeneous set of nodes. Each node that does the core processing takes a
similar slice of the work and has the same hardware resources.

This model is available through MDS and is simple to implement but has a couple
drawbacks. Components processing core data operations, index maintenance, or
executing queries all compete with each other for resources. It is impossible to fine-
tune each component because each of them has different demands on hardware
resources. This is a common problem with other NoSQL databases. While the core
data operations can benefit greatly from scale-out with smaller commodity nodes,
many low latency queries do not always benefit from wider fan-out.

Independent scaling model
MDS is designed to minimize interference between services. When you separate
the competing workloads into independent services and isolate them from each
other, interference among them is minimized. The figure below demonstrates a
deployment topology that can be achieved with MDS. In this topology, each service is
deployed to an independent zone within the cluster.

Each service zone within a cluster (data, query, and index services) can now scale
independently so that the best computational capacity is provided for each of them.

In the figure above, the blue additions signify the direction of scaling for each service.
In this case, query and index services scale-up over the fewer sets of powerful nodes
and data service scales out with an additional node.

Node 8 Node 9Query
Service

Index
Service

Data Service

Query
Service

Node 8Node 1

Data ServiceIndex
Service

WHITEPAPER 34

Data distribution
Couchbase partitions data into vBuckets (synonymous to shards or partitions)
to automatically distribute data across nodes, a process sometimes known as
auto-sharding.

vBuckets help enable data replication, failover, and dynamic cluster reconfiguration.
Unlike data buckets, users and applications do not manipulate vBuckets directly.
Couchbase automatically divides each bucket into 1024 active vBuckets and 1024
replica vBuckets per replica, and then distributes them evenly across the nodes
running the data service within a cluster. vBuckets do not have a fixed physical
location on nodes; therefore, there is a mapping of vBuckets to nodes known as
the cluster map. Through the Couchbase SDK, the application automatically and
transparently distributes the data and workload across these vBuckets.

INDEX PARTITIONS AND REPLICAS
Global secondary indexes (GSI) can also be partitioned using several approaches
depending on the pattern of queries that need to be supported. Commonly, GSI are
stored identically on each index node so that any node can help with queries. But
in some cases it is better for performance or storage management to spread the
indexes across several nodes. There are many options for creating these partitions—
different attributes in a document can be used as a hash key (one or more),
partitions can also be assigned to specific nodes, and more.

As documents are added and updated, those mutations are streamed from memory
to a local projector process which then forwards them to the relevant index service
node(s). Every index node has a supervisor process running the index service.
This process listens to changes from the projector processes on the data nodes. It
evaluates the incoming stream of changes for the specific indexes created on the
node running the index service. Each index is then updated independently with
that data.

Individual indexes can be automatically replicated to other nodes in the cluster to
achieve high availability, ensuring that an index continues to function even if a node
hosting the index is unavailable. Queries will load balance across the indexes and if
one of the indexes become unavailable, all requests are automatically rerouted to
the available remaining index without application or admin intervention.

Similarly, Couchbase supports independent partitioning of indexes to distribute the
data volumes and load of a single index across multiple processes and/or nodes.

DOCUMENTS

APP SIDE

User/application data Logical key spaces Dynamically scalable

SERVER SIDE

BUCKETS CLUSTER

DISTRIBUTED ACROSS THEREAD FROM/WRITTEN TO

WHITEPAPER 35

PARTITIONING OTHER SERVICES
All Couchbase services partition data and workloads across available nodes.
Full-text search, eventing, and analytics services partition and replicate data and
processes. They also all redistribute these across new cluster topologies when
rebalancing occurs.

•	 Search service – automatically partitions its indexes across all search nodes
in the cluster, ensuring that during rebalance, the distribution across all nodes
is balanced

•	 Eventing service – vBucket processing ownership is distributed across
eventing nodes

•	 Analytics service – a single copy of all analytics data is partitioned across all
cluster nodes that run the service

Rebalancing the cluster
When the number of servers in the cluster changes due to scaling out or node
failures, data partitions must be redistributed. This ensures that data is evenly
distributed across the cluster, and that application access to the data is load
balanced evenly across all the servers. This process is called rebalancing. All
Couchbase services are rebalance-aware and follow their own set of internal
processes for rebalance as needed.

Rebalancing is triggered using an explicit action from the admin web UI or through
a REST call. When initiated, the rebalance orchestrator calculates a new cluster map
based on the current pending set of servers to be added and removed from the
cluster. It streams the cluster map to all the servers in the cluster. During rebalance,
the cluster moves data via partition migration directly between two server nodes
in the cluster. As the cluster moves each partition from one location to another,
an atomic and consistent switchover takes place between the two nodes, and the
cluster updates each connected client library with a current cluster map.

Throughout migration and redistribution of partitions among servers, any given
partition on a server will be in one of three states:

•	 Active – the server hosting the partition is servicing all requests for this partition.

•	 Replica – the server hosting the partition cannot handle client requests, but can
receive replication commands. Rebalance marks destination partitions as replica
until they are ready to be switched to active.

•	 Dead – the server is not in any way responsible for this partition.

The node health monitor receives heartbeat updates from individual nodes in the
cluster, updating configuration and raising alerts as required. The partition state
and replication manager is responsible for establishing and monitoring the current
network of replication streams.

WHITEPAPER 36

High availability
“Couch,” in name Couchbase, is actually an original acronym that stands for,
“Clusters Of Unreliable Commodity Hardware.” We highlight this to remind readers
that scalability, reliability, and performance are foundational characteristics of
the database. To meet high availability requirements, all Couchbase maintenance
operations can be done while the system remains online, without requiring
modifications or interrupting running applications. The system never needs to be
taken offline for routine maintenance such as software upgrades, data rebalancing,
index building, compaction, instance refreshes, or any other operation. Even
provisioning or removing nodes can be done entirely online without any interruption
to running applications, and without requiring developers to modify their
applications.

Built-in fault tolerance mechanisms protect against downtime caused by arbitrary
unplanned incidents, including server failures. Replication and failover are important
mechanisms that increase system availability. Couchbase replicates data across
multiple nodes to support failover and durability. Ensuring that additional copies
of the data are available is automated to deal with the inevitable failures that large
distributed systems are designed to recover from. All of this is done automatically
without need for manual intervention or downtime.

COUCHBASE AND CP THEOREM
Couchbase is usually considered as a CP system, especially when deployed as a
single cluster. The letters in the CP acronym represent:

•	 Consistency (the latest information is always available everywhere)

•	 Partitioning Tolerance (which can be thought of as a form of fault tolerance)

The CP theorem states that a database cannot simultaneously provide all three of
the above guarantees. Practically speaking, most NoSQL databases are forced to
choose whether to favor consistency or availability in specific scenarios. For local
clusters, Couchbase favors consistency among cluster members, especially when
the cluster is supporting SQL transactions. However when creating geographically
dispersed, edge, or mobile systems, Couchbase can be configured to favor AP when
ensuring local data availability and durability are more important than systemic
consistency.

INTRA-CLUSTER REPLICATION
Up to three replica buckets can be defined for every bucket. Each replica itself is also
implemented as 1024 vBuckets. A vBucket that is part of the original implementation
of the defined bucket is referred to as an active vBucket. Therefore, a bucket defined
with two replicas has 1024 active vBuckets and replica vBuckets. Typically, only active
vBuckets are accessed for read and write operations: although vBuckets are able
to support read requests. Nevertheless, vBuckets receive a continuous stream of
mutations from the active vBucket by means of DCP, and are thereby kept constantly
up to date.

WHITEPAPER 37

To ensure maximum availability of data in case of node failures, the master services
for the cluster calculate and implement the optimal vBucket distribution across
available nodes. Consequently, the chance of data loss through the failure of an
individual node is minimized, since replicas are available on the nodes that remain.

Active and replica vBuckets correspond to a single, user-defined bucket, for which a
single replication instance has been specified. No replica resides on the same node
as its active equivalent.

When a node becomes unavailable, failover can be performed and the cluster
manager is instructed to read and write data only on available nodes. Failover can
be performed by manual intervention or automatically, promoting replica vBuckets
to active status when needed. Automatic failover can be performed for one node at
a time, and only up to a configurable number of times the maximum being three.
And multi-node failover can be configured to tolerate larger scale failures such as
multiple nodes in a racks or VMs on a host all fail at once, failover can switch to
vBuckets or collections on an available node.

The cluster manager never performs automatic failover where data loss might result.
The number of times failover can be safely performed depends on how many nodes
and replicas exist. For example, in a five-node cluster with one replica, a single node
can be failed over without danger, but if a second node fails, failover might result

ACTIVE

REPLICA

Couchbase Server 1

Server Cluster

ACTIVE

REPLICA

Couchbase Server 2

ACTIVE

REPLICA

Couchbase Server 3

CLUSTER MAP

CLIENT LIBRARY

APP SERVER 3

CLUSTER MAP

CLIENT LIBRARY

APP SERVER 2

CLUSTER MAP

CLIENT LIBRARY

APP SERVER 1

WHITEPAPER 38

in data loss, due to required replicas no longer being available. Similarly, in a five-
node cluster with two replicas, two nodes can be failed over without danger, a third
cannot. In such cases, manual recovery process is required. Failures of multiple
nodes or instances can be configured based on the number of failures that can
be tolerated.

NODE FAILOVER
Failover is the process in which a node of a Couchbase cluster is removed quickly as
opposed to intentional removal and rebalancing.

Auto-failover allows unresponsive servers to be failed over automatically by the
cluster manager. Data partitions in Couchbase are always served from a single
master node. As a result, if that node is down, the data will not be available until
restored. The server will either need to be manually or automatically failed over in
order to promote replica data partitions on replica servers to active data partitions
who become a new master, so that they can be accessed by the application.

The administrator will not always be able to manually fail servers over quickly
enough to avoid application downtime, so Couchbase provides an auto-failover
feature. This feature allows the cluster manager to automatically fail over nodes that
are down and bring the cluster back to a healthy state as quickly as possible.

In Couchbase Server Enterprise Edition nodes can also be automatically failed over
when the data service reports sustained disk I/O failures.

FAILOVER CHOICES
As a node failover has the potential to reduce the performance of your cluster, you
should consider how best to handle a failed node situation and also size your cluster
to plan for failover.

Manual or monitored failover
Manual failover is performed by either human monitoring or by using a system
external to the cluster. An external monitoring system can monitor both the cluster
and the node environment so that you can make a more data-driven decision.

Human intervention
Humans are uniquely capable of considering a wide range of data, observations,
and experiences to resolve a situation in the best possible way. Many organizations
disallow automated failover because they want a human to consider the
implications. Human intervention tends to be slower than using a computer-based
monitoring system.

External monitoring
Another option is to have a system monitoring the cluster via the Couchbase REST
API. Such an external system can failover nodes successfully because it can take into
account system components that are outside the scope of Couchbase Server.

For example, monitoring software can observe that a network switch is failing and
that there is a dependency on that switch by the Couchbase cluster. The system
can determine that failing nodes will not help the situation and will, therefore, not
failover the node. The monitoring system can also determine if the components
around Couchbase Server are functioning and if the various nodes in the cluster
are healthy.

WHITEPAPER 39

If the monitoring system determines the problem is only with a single node and
remaining nodes in the cluster can support aggregate traffic, then the system may
safely failover the node using the REST API or command-line tools.

Automatic failover
The cluster manager handles the detection, determination, and initiation of the
processes to failover a node without user intervention. Once the problem has been
identified and fixed, it still requires you to initiate a rebalance to return the cluster to
a healthy state.

SERVER GROUP AWARENESS
Server group awareness provides enhanced availability. Specifically, it protects a
cluster from large-scale infrastructure failure through the definition of groups. Each
group is created by an appropriately authorized administrator, and specified to
contain a subset of the nodes within a Couchbase cluster. Following group definition
and rebalance, the active vBuckets for any defined bucket are located on one group,
while the corresponding replicas are located on another group. This allows group
failover to be enabled, so that if an entire group goes offline, its replica vBuckets,
which remain available on another group, can be automatically promoted to
active status.

Groups should be defined in accordance with the physical distribution of nodes. For
example, a group should only include the nodes that are in a single server rack, or
in the case of cloud deployments, a single availability zone. Thus, if the server rack
or availability zone becomes unavailable due to a power or network failure, group
failover can allow continued access to the affected data.

Data protection is optimal when groups are assigned equal numbers of nodes, and
vBuckets are therefore distributed such that none ever occupies the same group
as its associated active vBucket. By contrast, when groups are not assigned equal
numbers of nodes, rebalance can only produce a best effort redistribution of replica
vBuckets. This may result in replica vBuckets occupying the same group as their
associated active vBuckets; meaning that data may be lost if such a group becomes
unavailable.

Server group awareness considerations:

•	 Server group awareness only applies to the data service.

•	 Failover should be enabled for server groups only if three or more server groups
have been established, and sufficient capacity exists to absorb the load of any
failed-over group.

•	 The first node, and all subsequent nodes, are automatically placed in a server
group named Group 1. Once you create additional server groups, you are required
to specify a server group when adding additional cluster nodes.

WHITEPAPER 40

CROSS DATACENTER REPLICATION (XDCR)
Cross datacenter replication provides an easy way to replicate active data, while
still in-memory, to multiple, geographically diverse data centers either for disaster
recovery, or availability to bring data closer to the edge and its users.

XDCR and intra-cluster replication (replication among local cluster nodes for
durability) occurs simultaneously. For example, intra-cluster replication is taking
place within the clusters at both Datacenter 1 and Datacenter 2, while at the same
time, XDCR is replicating documents across data centers. On each node, after
a document is persisted to disk, XDCR pushes the replica documents to other
clusters. On the destination cluster, replica documents received will be stored in the
Couchbase managed object cache so that replica data on the destination cluster can
undergo low latency read/write operations.

WHITEPAPER 41

XDCR can be set up on a per-bucket or per-collection basis. Depending on your
application requirements, you might want to replicate only a subset of the data
in Couchbase Server between two clusters. With XDCR you can selectively pick
which buckets or collections to replicate between two clusters in a unidirectional or
bidirectional fashion. Bidirectional XDCR can be set up between Bucket C on both
Cluster 1 and 2. There is unidirectional XDCR between Bucket B on both clusters.
Bucket A is not replicated.

XDCR provides only a single basic mechanism from which replications are built: this
is the unidirectional replication. A bidirectional topology is created by implementing
two unidirectional replications, in opposite directions, between two clusters; such
that a bucket or collection on each cluster functions as both source and target.

Used in different combinations, unidirectional and bidirectional replication can support
complex topologies; an example being the ring topology, where multiple clusters each
connect to exactly two peers, so that a complete ring of connections is formed.

When a bucket is specified as the source for an XDCR replication, all data in the
bucket is replicated. Thus, if replication is started between source and target buckets
that initially contain different datasets, the replication process eventually establishes
a complete superset of data within each bucket.

XDCR can also apply filters to replication streams within buckets and collections.
This can further scope the data being delivered to its target.

XDCR supports continuous replication of data. Data mutations are replicated to the
destination cluster after they are written to disk. By default, there are 32 data streams
per server per XDCR connection. These streams are spread across the partitions. They
move data in parallel from the source cluster to the destination cluster.

The source and destination clusters can have a different number of servers in
varying topologies. If a server in the destination cluster goes down, XDCR is able to
get the updated cluster topology information and continue replicating data to the
available servers in the destination cluster.

XDCR is push-based. The source cluster regularly checkpoints the XDCR replication
queue per partition and keeps track of what data the destination cluster last
received. If the replication process is interrupted, for example, due to a server crash
or intermittent network connection failure, it is not required to restart replication
from the beginning. Instead, once the replication link is restored, replication can
continue from the last checkpoint seen by the destination cluster.

By default, XDCR in Couchbase is designed to optimize bandwidth. This includes
optimizations like mutation deduplication as well as checking the destination cluster
to see if a mutation is required to be shipped across. If the destination cluster has
already seen the latest version of the data mutation, the source cluster does not
send it across. However, in some use cases with active-active XDCR, you may want to
skip checking whether the destination cluster has already seen the latest version of
the data mutation, and optimistically replicate all mutations.

XDCR CAN BE SET UP

ON A PER-BUCKET

OR PER-COLLECTION

BASIS. DEPENDING ON

YOUR APPLICATION

REQUIREMENTS, YOU

MIGHT WANT TO REPLICATE

ONLY A SUBSET OF THE

DATA IN COUCHBASE

SERVER BETWEEN TWO

CLUSTERS.

WHITEPAPER 42

CONFLICT RESOLUTION
Within a cluster, Couchbase provides strong consistency at the document level.
Likewise, XDCR also provides eventual consistency across clusters. Built-in conflict
resolution will pick the same “winner” on both clusters if the same document was
mutated on both clusters before it was replicated across. If a conflict occurs, the
document with the most updates will be considered the “winner.” If both the source
and the destination clusters have the same number of updates for a document,
additional metadata such as numerical sequence, CAS value, document flags, and
expiration TTL value are used to pick the “winner.” XDCR applies the same rule across
clusters to make sure document consistency is maintained.

PRIORITY
For high throughput clusters, multiple XDCR replications may compete for resources
in terms of memory and bandwidth. Different replications can be assigned a high,
medium, or low priority.

Security
Couchbase Server can be rendered highly secure, so as to preserve the privacy and
integrity of data, and account for access attempts. Couchbase provides the following
security facilities:

•	 Authentication – All administrators, users, and applications (all formally
considered users) must authenticate in order to gain server access. Users can be
authenticated by means of either the local or an external password registry such
as LDAP or PAM. Authentication can be achieved by either passing credentials
directly to the server, or by using a client certificate, in which the credentials are
embedded. Connections can be secured by means of SCRAM and TLS.

•	 Authorization – Couchbase Server uses Role-Based Access Control (RBAC) to
associate users with specifically assigned roles, each role corresponds to system-
defined privileges, which allow degrees of access to specific system resources.
During authentication, user roles are determined; therefore, authorization is
granted if the role has approved system access, otherwise it is denied. LDAP
Groups can be mapped to Couchbase roles which authorize users to specific
database functions (i.e. read, write, update, query) on a whole cluster, a single
or set of buckets, scopes within buckets, collections within scopes, and even
documents within collections.

•	 Auditing – Actions performed on Couchbase Server can be audited. This allows
administrators to ensure that system management tasks are being appropriately
performed. Monitoring information can be collected and reported using the
Couchbase integration to Prometheus, a popular cloud native monitoring tool.

Couchbase Server supports the encryption of data that is at rest on disk, on the wire,
and held by applications. Additionally, it provides a system of secret management,
which allows essential information to the security and maintenance of Couchbase
Server to be stored in encrypted form; and then decrypted and appropriately used at
cluster startup.

WHITEPAPER 43

ENCRYPTION AT REST
Couchbase can run on top of commonly used third-party encryption tools, such
as Linux Unified Key Setup (LUKS), Vormetric, Gemalto, and Protegrity, to provide
a complete solution for data encryption at rest while also being accessible to all
Couchbase services.

Couchbase SDKs provide methods for encrypting portions of documents for added
security at the application layer. Encrypted data sent back to the server is then
always stored in that encrypted state, at rest, and is inaccessible without the key
used by the original application layer. Couchbase cannot index or query application-
encrypted fields.

ENCRYPTION OVER-THE-WIRE
For an application to communicate securely with Couchbase Server, SSL/TLS must
be enabled on the client side. When a TLS connection is established between a client
application and Couchbase Server (running on port 18091), a handshake occurs, as
defined by the TLS Handshake Protocol. As part of this exchange, the client must
send to the server a cipher-suite list; which indicates the cipher-suites that the
client supports, in order of preference. The server replies with a notification of the
cipher-suite it has duly selected from the list. Additionally, symmetric keys to be
used by client and server are selected by means of the RSA key-exchange algorithm.
Couchbase SDKs support SSL/TLS encryption and must use the Couchbase network
port 11207 for secure communication. Couchbase Server uses ciphers that are
accepted by default by OpenSSL. The default behavior employs high-security
ciphers, built into OpenSSL, but can be overridden depending on the security level
required by the cluster. Couchbase also supports self-signing of TLS certificates, and
integrates with popular key and secret management services.

MOVING DATA BETWEEN NODES
Couchbase Server replicates data across a cluster to ensure high availability of data.
When encrypting documents, replica copies are duly transmitted and stored in
encrypted form.

Couchbase supports node-to-node transport level security. When enabled,
Couchbase will use TLS to encrypt traffic for intra-cluster communication between
nodes. There are two settings: Control and All. When control level security is
enabled, only communication between the cluster manager and related services are
encrypted but data between nodes is transmitted in the clear. When all is enabled, all
communication between cluster nodes is encrypted. Control level prevents attackers
who have gotten on the cluster network from affecting the cluster configuration, but
they could still sniff data between clusters. All prevents any unauthorized user on the
network from reading any of the data over the wire.

WHITEPAPER 44

For added security, use IPSec on the network that connects the nodes. Note that
IPSec has two modes: tunnel and transport. Transport mode is recommended, as it is
the easier of the two to set up, and does not require the creation of tunnels between
all pairs of Couchbase nodes.

Enabling both Couchbase’s node-to-node transport level security and IPSec security
is not recommended. This form of double encryption does not increase the amount
of security and will dramatically affect performance and make the cluster less
resilient to denial of service attacks.

MOVING DATA BETWEEN DATACENTERS
To protect data transmitted between datacenters, TLS is used to encrypt XDCR
connections. When TLS in XDCR is enabled, Couchbase uses TLS certificates. TLS
versions 1.0 to 1.3 are supported. All traffic between source and destination data
centers is encrypted.

Mobile client synchronization
Couchbase clusters can be extended to mobile applications running on edge devices.
This is done by adding a Sync Gateway layer as an intermediary between device
applications and Couchbase Server. Couchbase Lite’s SDK is then used to develop
mobile applications communicating via this synchronization layer.

Using the Sync Gateway service, data can be seamlessly extended to connect with
remote edge devices that are occasionally disconnected or connected. Sync Gateway
monitors data changes and maintains synchronization between Couchbase Server
and mobile applications. Sync Gateway also supports hierarchical replication to
and from its own peers, allowing organizations to create multiple Sync Gateway
endpoints (edgepoint), located in airports or ports of call to fully accommodate
mobile applications on the move.

Client Tier Internet Middle Tier Intranet Data Tier

1

2

3

2

4

Local Storage
Full Database

AES-256 Encryption

Secure
Transport
Over Wire

Secure
Transport
Over Wire

Pluggable
Authentication
and Role-Based
Access Control

Role-Based Access
Control and Secure

Data Storage

Geo-Fencing
with Secure,

Filtered XDCR

Web ServicesMobile
Client

Web
Client

Couchbase
Server

Embedded
System

SYNC
GATEWAY

5

COUCHBASE LITE

COUCHBASE CLUSTERS CAN

BE EXTENDED TO MOBILE

APPLICATIONS RUNNING

ON EDGE DEVICES. THIS IS

DONE BY ADDING A SYNC

GATEWAY LAYER AS AN

INTERMEDIARY BETWEEN

DEVICE APPLICATIONS AND

COUCHBASE SERVER.

WHITEPAPER 45

Sync Gateway provides the facility to ensure that all writes happen. Along with
security and replication, metadata is managed by Sync Gateway and abstracted from
applications reading and writing data directly to Couchbase Server. Sync Gateway
uses a feature of Couchbase Server called extended attributes (XATTRs) to store that
metadata in an external document fragment. Mobile, web, and desktop applications
can therefore write to the same bucket in a Couchbase.

Peer-to-peer synchronization
A unique capability of Couchbase Lite is its ability to synchronize data from
one mobile client to another, eliminating the need for data to complete a long
internet traversal to and from an internet-hosted Couchbase Server. Peer-to-peer
synchronization only requires a common network connection such as Bluetooth or a
local area network to support the movement of data among clients. This is especially
helpful when internet connectivity cannot be reliably maintained, but data must still
be shared, such as creating pop-up medical clinics, or synchronizing data among
pilots and aviation maintenance crews.

Conflict resolution
As Couchbase Mobile can handle several kinds of scenarios where multiple users
may make updates—e.g., offline, peer-to-peer, and live database sync modes—being
able to manage mutation conflicts is essential. The system, therefore, keeps track
of the changes and prevents new documents from simply overriding others. The
developer is given tools to control the save and delete operations so that a last-write-
wins or last-write-fails protocol can automatically resolve any conflicts.

Clients with
Couchbase Lite

Couchbase Server

SDKsSync Gateway

Web clients

DCP

Data sync

RESTful API

N1QL

{ }

WHITEPAPER 46

RESOURCES

Couchbase has a rich ecosystem of adapters that support other systems:

•	 SQL integration resources include: Tableau, CData, Knowi, Talend, and more

•	 Big data integration includes Spark, Kafka, and Elasticsearch

Several flexible deployment options are available to support different environments:

•	 Download Couchbase Server for free, visit
http://www.couchbase.com/downloads

•	 Couchbase Autonomous Operator for Kubernetes and OpenShift

•	 Docker Hub hosts official Couchbase Docker images

•	 Managed cloud service

Training is available through in-class instructor led and free online courses.
See the course catalog at: https://learn.couchbase.com/

Comprehensive Couchbase documentation is available at:
https://docs.couchbase.com/

This paper describes the
architecture of Couchbase-
Server, but the best way to
get to know the technology
is to download and use it.
Couchbase Server is a good
fit for a number of use cases
including social gaming,
ad targeting, content store,
high availability caching,
and more.

https://https://www.couchbase.com/products/sql-integration
https://www.couchbase.com/products/sql-integration
https://www.couchbase.com/downloads
https://www.couchbase.com/products/cloud/kubernetes
https://docs.couchbase.com/server/6.0/install/getting-started-docker.html
https://www.couchbase.com/products/cloud
https://learn.couchbase.com/store
https://docs.couchbase.com/home/index.html
https://docs.couchbase.com/home/index.html

At Couchbase, we believe data is at the heart of the enterprise. We
empower developers and architects to build, deploy, and run their mission-
critical applications. Couchbase delivers a high-performance, flexible and
scalable modern database that runs across the data center and any cloud.
Many of the world’s largest enterprises rely on Couchbase to power the
core applications their businesses depend on.

For more information, visit www.couchbase.com and follow us on Twitter.

© 2023 Couchbase. All rights reserved.

https://www.couchbase.com

	Introduction
	Essential NoSQL requirements and features
	The original multi-model NoSQL database
	Couchbase is an open source database company

	Core performance design principles
	Memory and network-centric architecture for speed
and low latency
	Multimodel data access blending JSON flexibility
with Key/Value speed
	Workload isolation
	Asynchronous approach to everything

	JSON DATA MODEL AND ACCESS METHODS
	JSON document data model
	JSON document flexibility

	Document access methods
	Key, values, and sub-documents
	Keys
	Values
	Sub-documents

	Key organizing concepts for documents
	Flexible, dynamic data containment model
	Buckets
	vBuckets
	Scopes
	Collections
	Documents

	Cluster design concepts
	Nodes
	Clusters
	Services

	Couchbase Services
	Data Service and Key/Value Engine
	Couchstore and Couchbase Magma, High Data-Density Storage
	Managed object cache
	Document expiration
	Memory management
	Compression
	Compression modes
	Compaction
	Mutations

	Key-value data access
	Query service
	ACID Transactions in SQL++
	Compare SQL Transactions to Couchbase SQL++
	Cost-based Query Optimization

	Index service
	Index Advisor
	Query consistency
	Memory-optimized indexes (MOI)

	Search service
	Eventing service
	Analytics
	Mobile and the edge App Services

	Distributed Foundation
	Node-level architecture
	Cluster architecture
	Cluster/node configuration
	Cluster manager

	Client connectivity
	Topology-aware client

	Data transport via Database Change Protocol (DCP)
	Multi-Dimensional Scaling (MDS)
	Homogeneous scaling model

	Independent scaling model
	Data distribution
	Index partitions and replicas
	Partitioning other services

	Rebalancing the cluster
	High availability
	Couchbase and CP Theorem
	Intra-cluster replication
	Node failover
	Failover choices
	Server group awareness
	Cross Datacenter Replication (XDCR)
	Priority

	Security
	Encryption at rest
	Encryption over-the-wire
	Moving data between nodes
	Moving data between datacenters

	Mobile client synchronization
	Peer-to-peer synchronization
	Conflict resolution

	Resources

