
GUIDE

Database
Advice Guide

Developer’s Guidebook

GUIDE 2

Contents
INTRODUCTION 3

CHOOSING A DATABASE PLATFORM 3

SETTING UP AND CONFIGURING YOUR DATABASE 8

Learning your database platform 8

Data modeling 8

Ease of development 10

Data access 11

Development tools 13

Production performance, high availability, and scalability 14

SECURITY AND DATA PROTECTION 16

Core database security 16

Hosted data security 18

CONCLUSION 19

GUIDE 3

INTRODUCTION

The database is one of the most important parts of a software system, whether for
an application or a data warehouse project. As such, this document offers a virtual
checklist that you can use when evaluating a database.

Don’t underestimate the work that you need to spend in planning your data
needs and scope. Picking a database is a long-term commitment. The database
is the foundation of your application and provides secure, reliable storage and
access to all of your information. Without trustworthy data, you don’t have
much of an application. This paper will focus on operational databases, those
technologies designed as the data storage and data access support for application
or microservices development. These databases have different attributes than
pure analytical data warehouses, data marts, and data lakes, such as Snowflake
or Databricks, which are used to aggregate data from a wider range of sources,
requiring some extraction, transformation, and load (ETL) processes to bring data
into the database. Additionally, the queries are often much more analysis-based than
in an operational database.

CHOOSING A DATABASE PLATFORM

There are hundreds of databases and data-related platforms on the market. There
are many ways to narrow down the scope and the following sections examine some
of the most immediate choices.

The first question you will likely need to answer is, “Do I want to use a relational
database?” And if so, what are the features I think I need in a relational database
versus what I can have with a NoSQL database? Relational databases or relational
database management systems (RDBMS) represent around 80% of the operational
database market.

RELATIONAL DATABASES
A RDBMS is structured on the relational model of data that organizes information
into tables of rows and columns, that are related to each other, and usually have
a unique key for each row. Typically, different entity types (e.g., product or region)
that are described in a database have their own table with the rows representing
instances of that type of entity and the columns representing values attributed to
that instance. Each row in a table has its own specific key and rows can be linked
to rows in other tables by storing the unique key of the target row (“foreign key”).
The linking of tables together allows for data to be set up in a way where data is
not duplicated in the database, making storage very efficient. In order to get the
best of a relational database, its schema (table and relational layout) is planned
well in advance and tends to be difficult to change without significant changes to
the application. This design rose to popularity from the ʼ70s through the ʼ90s when
storage was very costly.

RELATIONAL DATABASES

OR RELATIONAL DATABASE

MANAGEMENT SYSTEMS

(RDBMS) REPRESENT AROUND

80% OF THE OPERATIONAL

DATABASE MARKET.

This paper will cover:

• Areas to consider when
choosing a database
platform

• Setting up and configuring
your database

• Ease of use

• Production performance,
high availability, and
scalability

• Security and data
protection

GUIDE 4

Nearly all RDBMSs use SQL (Structured Query Language) as the language for
querying and updating the database. The SQL language had two big advantages
over older APIs. First, it gave rise to the idea of accessing many records with one
single command, and second, it eliminated the need to specify how to reach a
record. It is essentially a declarative language, but with procedural elements. With
the combination of organized table structure design and an easy-to-use query
language, relational databases became popular due to their simplicity, robustness,
transactional performance, and compatibility in managing data with other systems.
For example, a fairly simple SQL SELECT statement could have many potential query
execution paths. The RDBMS determines the best “execution plan” using features
such as a cost-based optimizer to choose the correct indexes and paths.

The challenge for the relational database comes typically in two main areas: flexibility
and scalability. As previously mentioned, the schema design of the database is
often developed in the early stages of application development, with table design
and key relationships intended to stay fairly static. Unfortunately, as the needs
of the application change or as the desire to add new features evolves (often due
to business changes) there is a need to redesign the schema. This often requires
analysis to see the knock-on effects of the change and it may involve a database
administrator (DBA) and other parts of an organization. The other key challenge
is scalability. Relational databases scale up well on a single machine but work less
effectively when scaling out across multiple servers that can distribute the load.
During attempts to scale to hundreds or thousands of servers, the complexities
can become overwhelming. The characteristics that make relational databases so
appealing are the very same that also drastically reduce their viability as platforms
for large distributed systems.

Relational Database Pros Relational Database Cons

• Strong support for data integrity
and transactions

• Highly functional/popular query
language including “joins” between
tables

• Powerful indexing capabilities,
query planning, and cost-based
optimization

• Rigid structure slows ongoing
application evolution – less capable
with semi-structured data

• Scalability challenges and high costs

• Overly efficient schema design can
result in many tables and joins,
which can impact read and write
speeds

Examples of relational
databases include:
• Amazon Aurora

• IBM Db2

• Microsoft SQL Server

• MySQL

• Oracle

• Postgres

GUIDE 5

NOSQL DATABASES
Non-relational databases, often referred to as NoSQL databases, are designed to
store and retrieve data that are not stored in relational table format. The most
common types of NoSQL databases are key-value store, wide columnar, document,
graph, and time-series.

• Key-value store: The simplest form of a NoSQL database, data elements are
stored in key-value pairs that can be retrieved by using a unique key for each
element. Values can be simple data types like strings/numbers or complex objects.
Great speed can be achieved via key-value access.

• Document databases: Store data in JSON, BSON, or XML documents, in a form
that is much closer to the data objects used in applications. This means less
translation is required to use the data in the applications (compared to relational
databases). Collections are a grouping of documents used to help organize
information. Documents provide great flexibility to change the database as the
application evolves, since there is no schema enforced by the database.

• Graph databases: Focusing on the relationship between the elements, data
is stored in the form of nodes. Connections between nodes are called edges.
The goal is to be able to easily identify relationships between data by traversing
the links.

• Time-series databases: Operate on data that is evaluated at regular intervals
such as stock feeds or operating system activity logs. Here, the ability to zoom in
and out at different granularity levels (from minutes to days, for example) may
reveal trends from the data.

• Wide-column databases: Organize data into column families rather than
traditional rows, allowing efficient access to sparse or large datasets. They’re
optimized for high write throughput and analytical queries across large volumes
of data, making them well-suited for time-series, IoT, and log data.

Overall, NoSQL databases are designed to give developers more flexibility in how
they store and retrieve data. These databases are sometimes architected to improve
horizontal scaling with distributed architectures. Nodes can be added and changed
without requiring changes to the application, with data automatically replicated to
new nodes. This also often results in better uptime with less work required. These
systems were designed for big data and modern development practices like agile
development, CI/CD, and serverless. Some NoSQL databases have proprietary query
languages, while others have adopted SQL. Advanced databases offer sophisticated
indexing technologies, ACID transaction support, and cost-based optimizers. It’s
difficult to speak on the pros/cons of NoSQL as a whole, because there is so much
variety under that umbrella.

OVERALL, NOSQL DATABASES

ARE DESIGNED TO GIVE

DEVELOPERS MORE FLEXIBILITY

IN HOW THEY STORE AND

RETRIEVE DATA.

GUIDE 6

NoSQL Database Pros NoSQL Database Cons

• Flexible schemas/schemaless

• High availability with less
maintenance

• Automated scaling

• Versatile/specialized data modeling

• Potentially limited indexing
(depends on type)

• Less data integrity and consistency
is possible

• Less familiar to the industry

• Data duplication potential

PERFORMANCE
Performance is another important area to consider when choosing your database.
Almost all databases will work quickly at a small scale with limited concurrency,
numbers of nodes, data, and users. While you may not have full clarity on the
expected growth of your application and database in the future, the more you
know the better you can select the right database. Two typical measures of
performance are throughput (operations per second) and latency, which measure
the round-trip time between a client and the database. For NoSQL databases,
the industry standard for measuring performance is the Yahoo! Cloud Serving
Benchmark (YCSB). A neutral third party, benchANT, publishes performance results
from several products and vendors.

DATA ACCESS
Some databases are very limited in how one can access data, while others provide
a variety of ways to get at the data. Key-value APIs use gets and puts for simpler
and often faster data retrieval. Textsearch queries (using facets, fuzzy, language
awareness, scoring, etc.), also known as full-text search, can be a very useful
database feature, providing search functionality for users within applications.
Another option rising in popularity is vector search, enabling search on semantic
meanings rather than exactly values. SQL is an industry standard for relational
databases, but also has support in many NoSQL databases. Depending on the
combination of your present and future needs, ensure your database has your
querying needs covered. Having many query options makes a database multi-model
and lets developers do more in one database, which can reduce vendor and data
sprawl. Read “A Story of How Multi-Model Databases Can Reduce Data Sprawl” for
more detail.

CLOUD STRATEGY
Moving your database to the cloud can offer flexibility, affordability, and scalability,
but there are many ways to run in the cloud. Some organizations may prefer to
self-manage in the cloud, giving them full control over their configuration and data,
yet still getting the benefits of scalable infrastructure. Additionally, many look to
automate self-management in some way using containers and Kubernetes. This
makes it easier to administer a database once it is up and running and over time,
and provides a standard API that can be used on a variety of cloud providers. For
those looking for even less management burden, many database vendors now offer
Database-as-a-Service (DBaaS) solutions. These let users provision clusters in a cloud
provider of their choice and leave the majority of administration up to the database

Examples of NoSQL
databases include:

• Cassandra

• Couchbase

• Cosmos DB

• DynamoDB

• MongoDB™

• Redis

• Neo4j

https://benchant.com/ranking/database-ranking
https://benchant.com/ranking/database-ranking
https://www.couchbase.com/blog/a-story-of-how-multimodel-databases-can-reduce-data-sprawl-told-in-the-pixar-style/

GUIDE 7

vendor. For all of these choices, a critical decision is the balance of control versus
convenience. Often the more convenient the system, the less control a user has
over what happens in the database. Most of the large cloud infrastructure providers
also offer a host of database services. While many start with those databases due to
ease of access, you need to consider the issue of vendor lock-in and the benefits of a
multicloud strategy, like pricing flexibility and system resiliency.

DATABASE-AS-A-SERVICE
A Database-as-a-Service typically runs on a cloud computing platform and is
fully managed as-a-service by a database provider. Database services take care
of replication, scalability, high availability, upgrades, and patching, making the
underlying software more transparent to the user. Some databases provide very
specific capabilities, while others are more broad and flexible. Cloud providers like
AWS, Google Cloud, and Microsoft Azure offer a variety of DBaaS offerings, each
focused on narrow capabilities. Sometimes that selection can add complication
and sprawl.

MOBILE USAGE
Will your DBaaS need to sync data to a mobile or edge application? If so, you should
consider the options for an embeddable database that can be synced with a central
clustered database. This brings the advantages of always-on apps regardless of web
connectivity and speed. With a smart syncing and storage strategy, users will be
able to quickly and easily search, update, and analyze data at the edge. Ensure that
your database has a mobile strategy to enable sync, offline-first, and/or resource-
constrained environments.

ANALYTICS
As stated at the beginning, the focus of this paper is operational databases and
not pure analytical databases, which doesn’t mean that no analysis happens in
an operational environment. Analysis is of course a very broad term. Analysis
performed on the data tied to an operational dataset is often only used for one
application. And by not having to move the data to a data warehouse, users can
examine data in near-real time. The industry refers to this as hybrid transaction/
analytical processing (HTAP) or hybrid operational and analytical processing (HOAP).
It “breaks the wall” between transaction processing and analytics, and enables more
informed and faster business decision-making. To help ensure that queries run
quickly at scale, some databases accelerate queries by utilizing a massively parallel
processing (MPP) engine and/or columnar storage.

COST
While most databases offer some sort of free tier or community edition, it is
often not enough to support a production application. In planning for application
deployment, you need to forecast your data volume needs, identify the services
needed to meet your functional requirements, and understand the performance
capabilities to meet your goals. Most vendors provide detailed pricing information
on their websites. Conducting a proof of concept (PoC) is a good starting point to
evaluate pricing. Understanding scalability also helps you identify the sizing needs for
scale to determine the overall cost in production.

GUIDE 8

SETTING UP AND CONFIGURING YOUR DATABASE

Learning your database platform

EASY, QUICK SETUP
One of the keys to utilizing database management systems is a fast, simple setup.
The traditional steps of procuring hardware, installing software, testing that the
setup was performed suitably, etc., are not feasible in the modern agile development
life cycle. For many organizations the solution is to move to a DBaaS model.

Database-as-a-Service is a managed service that lets users access database services
without having to be concerned about managing infrastructure or software updates.
It is the easiest and fastest way to deploy a modern database. Basically, a fully
managed cloud service heavily reduces your database management burden. A
database cluster can be deployed in just a few clicks. All that is required is to create
an account to quickly generate clusters and databases, import data, and utilize the
available database services of a fully managed DBaaS in a cloud environment.

INTUITIVE USER INTERFACE
An intuitive interface works the way the user expects; allowing users to navigate
the UI instinctively while focusing on the tasks rather than struggling to navigate a
complex interface. While you may want to script common tasks and/or use an API to
manage your database, using a UI to explore and visualize data can be very helpful.

FAMILIAR SQL SYNTAX SUPPORT
The most popular language for interacting with data is SQL. SQL is a language that
has been around in relational databases since the 1970s, and has expanded to
SQL++ for use with non-relational JSON document databases. Whether you’re looking
at relational or non-relational databases, robust SQL support means that many
database and query skills will translate from database to database, and will help
your team to ramp up on a new database faster without needing to hire experts in a
proprietary query language.

Data modeling

FLEXIBILITY
Data flexibility is an important capability that allows teams to more quickly and
efficiently respond to changing requirements. Document databases offer flexible
JSON models with the schema enforced by the application instead of the database.
Users can model data in a way that fits their application objects, nest documents, or
even emulate RDBMS models. JSON provides a simple, lightweight, human-readable
notation. It supports basic data types, such as numbers and strings; and complex
types, such as embedded documents and arrays. JSON provides rapid serialization
and deserialization and is a very popular REST API return data type.

THE MOST POPULAR

LANGUAGE FOR INTERACTING

WITH DATA IS SQL.

GUIDE 9

DENORMALIZING RDBMS DATA
One of the many advantages of using a document-based database is the ability
to use a flexible data model to store data without the constraints of a rigid,
predetermined schema. When moving from an RDBMS data model to a NoSQL
document model a common practice is to denormalize the data. Main RDBMS tables
and auxiliary tables are often combined as nested parent and child JSON documents.
However, it is also beneficial to consider how the data will be accessed since this
greatly influences the data modeling strategy. For instance, smaller documents
can be read/written faster. Please note that denormalizing data may increase the
duplication of data and increase storage size. Storage costs have continued to
decrease every year, but still should be a consideration.

NESTED JSON DOCUMENTS
Nested JSON documents minimize the need for JOINs which makes data access
faster and more efficient. It can also simplify the data model. A typical RDBMS
database architecture diagram has many more table objects than a NoSQL
architecture diagram has corresponding collections. But it is important to note that
with consolidation, documents may be larger. If your model gravitates toward large
documents, it’s important to make use of sub-document APIs when possible (APIs
that allow partial reading/writing of documents).

JOIN SUPPORT
In the NoSQL document database world, SQL is uncommon, and JOINs are more so
(but not completely absent). Just as in a relational model, a JOIN clause can be used
to link two or more source objects. Look for the following types of joins, and if they
are supported:

• ANSI JOIN (joining between multiple documents on an arbitrary field)

• Lookup JOIN (joining between multiple documents based on their ID or document
key joined with an arbitrary field)

• Index JOIN (the reverse of a lookup JOIN, requiring an index)

When exploring a distributed document database, JOIN support across shards/
partitions also needs to be considered, as they aren’t always supported.

RDBMS CONCEPTS
Key concepts such as tables are widely understood. Many of these concepts can be
mapped to a (roughly) equivalent feature in document databases.

RDBMS Document DBMS

Schema Scope

Table Collection

Row Document

Primary key Document key

Index Index

GUIDE 10

ACID TRANSACTIONS
Relational databases must support ACID transactions, due to the nature of their data
modeling requirements. ACID transactions are required when updating multiple
data in multiple tables: the operations must all succeed or all fail. JSON document
databases initially skipped ACID transactions in favor of performance, but many
of these NoSQL databases now support ACID transactions. With the SQL++ query
language, multi-document ACID transactions can be achieved and use the common
syntax of BEGIN, COMMIT, and ROLLBACK. Again, there may be limitations based on
sharding/partitioning, so if your application needs to perform transactions between
shards, check to make sure what support is available (if any).

Ease of development
Familiarity, industry standards, and good documentation all help in ramping up
development efforts to accelerate developer productivity.

CRUD
A common way to get familiar with a database and its SDK is by writing a CRUD
application. CRUD stands for:

• Create

• Read

• Update

• Delete

These are key developer actions that also serve as very useful coding examples. The
time it takes to get a CRUD example up and running can help to familiarize you with
the basics, and give you a baseline to evaluate more complex operations.

DBAAS
A DBaaS solution means there is less maintenance required as compared to
managing database software yourself. Users can sign up and start working without
having to worry about software setup, installation, patches, or even system updates.
This allows users to focus on utilizing the platform and not “yak shaving.”

SUPPORTED ACCESS SERVICES
In a relational database, SQL is the only way to work with data. For NoSQL databases,
there are many other services that could be available (including SQL++). Full-text
search (browser-like), analytic queries, embedded mobile database syncing, database
event triggers, key-value access, and in-memory cache performance enhancement
are all examples of services that may be included in a database. You could take a
“polyglot persistence” approach and use a different database for each service, but
this multiplies the maintenance and integration work (more “yak shaving”). Even if
you don’t plan to use all these services from the beginning, choosing a database that
has these features ready to go can save you time, and provide a form of “future-
proofing.” Not to mention this approach can minimize “database sprawl” which can
turn into an architectural nightmare.

https://martinfowler.com/articles/nosql-intro-original.pdf

GUIDE 11

AI SERVICES
Integrated AI services allow developers to deploy and manage generative AI (GenAI)
workflows alongside operational data. These services support tools, prompt
orchestration, and model invocation, providing a foundation for retrieval-augmented
generation (RAG) and agent-based apps. The ability to host models close to the data
improves performance, costs, and privacy.

Data access

MULTI-MODEL DATA ACCESS
A “multi-model” database is one that can support multiple access methods upon
the same pool of data. The system provides unified data management, access,
and governance, among other key features. For example, Couchbase provides the
following ways of interacting with data:

• Key-value: The ability to read/write data via a fast “key” lookup, given
Couchbase’s memory-first architecture, and is great for simple use cases
and ultra-fast performance.

• SQL++: The world’s most popular language for querying data; SQL syntax
support is a database industry standard data access method.

• Full-text search (FTS): A text “search engine” for data that also supports
geography-based searches, fuzzy search, faceting, etc.

• Geospatial: Search data based on geography and distance.

• Time-series: Store and query sequences of timestamped data.

• Analytics: Query data with complex, ad hoc SQL++ queries, in an isolated
environment with multi-tenant support.

• Eventing: Developers can write JavaScript functions that respond to data
change events.

• Vector: Semantic querying on vector embeddings, often used for AI use cases.

Access to more than one of these data access methods helps to minimize sprawl
and includes the efficiency benefit of users not having to learn multiple data
management systems and SDKs, patch and upgrade multiple systems, manage
multiple licenses, etc. This in turn reduces costs, as well as application development
time and time to production.

GUIDE 12

SDKS, BIG DATA CONNECTORS, AND RELATED TOOLS
Developers generally access data via specific language-based SDKs (or ODBC/
JDBC connectors in some circumstances). While your team may be focused on one
language, it’s important to evaluate the available SDKs, should the need for other
languages come up in the future. Here’s a sample checklist of SDKs:

Server-Side SDKs Mobile/Desktop SDKs

Java Java (Android)

Scala Java (Desktop)

.NET MAUI (.NET)

C/C++ Swift

Node.js Objective-C

PHP C/C++ (embedded)

Python

Ruby

Go

Kotlin

Rust

JDBC/ODBC

Also check for available big data connectors and other tools for real-time analytics,
streaming, data modeling, and search platforms. Some include:

• Kafka

• Spark

• Elasticsearch (ELK)

• CData

• Erwin

• Tableau

• Talend

• Power BI

• Apache Airflow

• Apache Camel

GUIDE 13

Finally, there are many AI tools and connectors that are used to build AI, chat, RAG,
agentic, etc., applications. Some include:

• Langflow

• LangChain/LangChain4j

• Haystack

• Gemini

• Vectorize

• Unstructured.io

• NVIDIA NIM

• LlamaIndex

• AWS Bedrock

Development tools

COMMAND LINE TOOLS
CLI tools can be helpful for developers, DBAs, and DevOps alike. Some tools to look
for include:

• Exporting data

• Importing data

• Creating backups

• REPL for SQL or SQL++

• Data/index migration

• AI/LLM

• Management and administration

• Configuration and settings

While many of these tasks can be accomplished with a UI, having command line
tools available is important and can provide efficiency and integration with other
command line tools that you are already using.

DATABASE IDES/SQL EDITORS
There are numerous editors or database IDEs available. You may already have
licenses for them, or be familiar with them through your organization. Some popular
choices include:

• JetBrains – A family of IDEs designed for developers. It has an extensive ecosystem
of plugins, including many database management and development plugins.

• DbVisualizer – A popular tool utilized by developers and DBAs across platforms.

• SQL Server Management Studio (SSMS) – A tool primarily used by SQL Server
database developers but that can be connected to the Couchbase platform.

• Visual Studio Code – A popular cross-platform IDE with an extensive ecosystem
of plugins, including database-related plugins.

These tools may provide native support and/or generic ODBC/JDBC support.

WHILE MANY OF

THESE TASKS CAN BE

ACCOMPLISHED WITH A

UI, HAVING COMMAND

LINE TOOLS AVAILABLE

IS IMPORTANT AND CAN

PROVIDE EFFICIENCY

AND INTEGRATION WITH

OTHER COMMAND

LINE TOOLS THAT YOU

ARE ALREADY USING.

GUIDE 14

JSON FORMATTERS/VALIDATORS/PARSERS/HELPERS
JSON formatters and validators are helpful when working with JSON documents.
Most of the IDEs listed above also feature JSON plugins.

There are also popular and easily accessible web-based JSON tools:

• JSON Parser

• JSON Lint

• JSON Editor Online

Production performance, high availability,
and scalability
As critical projects move from development to production, the needs for stability
and operational reliability become paramount. Developers needing these features
of distributed systems look to NoSQL databases to deliver them. These enterprise
production features provide the benefits of high availability, performance,
and scalability.

HIGH AVAILABILITY
High availability (HA) and disaster recovery (DR) are two of the driving reasons to
move from a traditional RDBMS to a NoSQL-based system. High availability, as a
concept, allows operations to guarantee certain levels of availability even in the
face of servers crashing.

NoSQL databases often support distributed database clustering, which helps deliver
high availability. These databases also focus on the need for simple management
and reducing interruptions to normal functioning. For example, operations can
be done while the system remains online, without requiring modifications or
interrupting running applications. All nodes do not need to be taken offline at the
same time for routine maintenance such as software upgrades, index building,
compaction, hardware refreshes, or other operations. Even provisioning new nodes
or removing nodes can be done online without interruption to running applications,
and without requiring developers to modify their applications.

Additionally, built-in fault tolerance mechanisms protect against downtime caused
by arbitrary unplanned incidents, including server failures. Replication and failover
are important mechanisms that increase system availability. For example, data
can be replicated across multiple nodes to support failover scenarios. Ensuring
that additional copies of the data are available is paramount to deal with the
inevitable failures that large distributed systems are designed to recover from.
This functionality is provided automatically without the need for manual
intervention or downtime.

https://jsonformatter.org/json-parser
https://jsonlint.com/
https://jsoneditoronline.org/

GUIDE 15

To deliver increased high availability, disaster recovery, and geographic load
balancing, entire clusters can also be replicated to one or more alternate
geographical locations. Often this creates additional challenges in linking clusters
that span across a wide-area network (WAN) rather than simply extending local-
cluster replication, but the benefits are often valuable to global applications.

For disaster recovery, customers can maintain a passive cluster (target) in addition
to an active cluster (source) as part of their continuity plan. This is beneficial when
the disasters occur at the data center or region level. Backup and recovery processes
are essential components of disaster recovery and can also be distributed to reduce
network overhead and related performance costs. The use of external blob/object
storage services can help to store backup data close to the operational cluster for
when it’s needed.

SPEED AND PERFORMANCE
Anyone can have a superfast database if they spend millions on an extreme
machine. But NoSQL users gain the benefits of scale-out – using many machines to
share the load – using normal or moderate server offerings or cloud instances.

The power of a cluster of nodes allows operations to be distributed to handle
workloads in an efficient manner. Additional nodes can be provisioned to help add
specific capabilities to perform better (e.g., more data storage or increased memory
allocations). This approach is called “multi-dimensional scaling.”

As workloads increase, more nodes can be added without having to upgrade
the existing nodes with more RAM, CPU, etc. (i.e., “vertical” scaling). Part of that
distributed system design relies on a “shared nothing” architecture – each node
manages its own resources including storage and processing. Additional nodes
added for particular services, such as full-text search or big data analytics, can also
use their own nodes without impacting performance of the others.

Replication and sharding are fundamental to automatically distributing data across
nodes in a cluster. Thus, the database can grow horizontally to share load by adding
more RAM, disk, and CPU capacity without increasing the burden on developers
and administrators. This type of hardware efficiency is gained by employing
asynchronous, non-blocking I/O for effective utilization of server resources. This
helps increase both the storage I/O efficiency and the number of simultaneously
connected clients per node.

Distributed database architectures help workloads be evenly distributed across
cluster nodes, to reduce bottlenecks and allow users to take full advantage of the
available hardware. The end result is higher performance, better utilization, and
improved TCO (e.g., avoiding over-provisioning).

SCALABILITY
There are several ways to scale a database platform. Scaling is not only about
increasing RAM or storage, but also about adjusting specific services that are
available. If a cluster has, for example, a query service on one node but it is getting
overutilized, then another similar node can be added or adjustment should be

GUIDE 16

made to increase RAM and CPU settings. A system should allow users to optimize
services alignment to hardware over time, as rarely does the needs of an application
grow linearly for all of the data services that it is using. During these optimization
changes, the team should not have to worry about how to replicate data or queries
to those services.

Various cluster configurations are used depending on the need for performance
versus high availability, etc. For example, NoSQL clusters can implement peer-to-
peer architectures, support active-active configurations, flexible topology including
multi-master bidirectional ring topology, simplified administration, and filtered
replication (where only certain data is replicated).

Decentralization of resources and parallelized streams (e.g., for replication) are
essential to having a fully scalable platform. But scalable clusters are also reliant on
having easy management when needing to expand the cluster. Keeping the cluster
online reduces any downtime or service disruptions.

When adding more nodes to a cluster, the database needs to be able to duplicate
data and services from one node before taking it online. NoSQL databases also use
concepts such as rolling upgrades where individual nodes are updated without being
taken offline. This can help when replacing a node, adding another node, scaling up a
node with more resources, etc.

SECURITY AND DATA PROTECTION

Security is an ongoing battle. In considering a database and its implementation,
the one big question is often whether the database will be self-managed or fully
managed by the database provider. Both will require many security considerations,
but for Database-as-a-Service offerings, there are additional aspects that will need to
be considered.

Core database security

ACCESS CONTROL
Access control is the foundation of database security, covering who can access the
system (authentication) and what they’re allowed to do (authorization). This applies
to both users and applications seeking to access data. Two important security
concepts are separation of duties and least privileged access.

• Authentication: Determines who is attempting to access the data. Users must
be clearly and strongly authenticated. Database companies often use different
models like:

• Password-based: Built-in password authentication for both users and
applications, where password strength policies are set based on complexity
of the password, lifecycle, updating of the password, etc. Credentials
transmission should be encrypted with transport-level security and/or hashed.

IN CONSIDERING A

DATABASE AND ITS

IMPLEMENTATION,

THE ONE BIG

QUESTION IS OFTEN

WHETHER THE

DATABASE WILL BE

SELF-MANAGED OR

FULLY MANAGED

BY THE DATABASE

PROVIDER.

GUIDE 17

• Certificate-based: Certificates like X.509 provide an additional layer
of security where the certificate authority validates identities and
issues certificates.

• Third-party/external authentication: This allows you to plug into
authentication platforms that organizations already have in place based on
technologies like LDAP or Active Directory layer.

• Authorization: Once a user has been authenticated, authorization determines
what a user or application is allowed to do with data. Sophisticated databases
employ role-based access control (RBAC) where users are mapped to roles that
determine the actions they are authorized to perform. Commonly, the roles
between administrators/users and applications/data access are separated. Each
user’s roles can be as broad or as restrictive as required, from a full administrator
having access to all administrative functions and data, to an analyst with read-only
access to a limited dataset.

For on-premises, self-managed solutions, the entire security environment must be
managed. There are many areas to consider, but a few key areas include:

• Physical security: Buildings, data centers, servers

• Network security: Firewalls, IP tables, WAN encryption

• Operating system: User management, security patches, and updates

• Application: Credentials

• Key management: Rotation, revocation, remediation

ENCRYPTION
Another critical aspect of privacy and data protection is encryption. The goal
is to make sure that sensitive information is not made available in the case of
unauthorized access. To do so, unencrypted data is encrypted by using an algorithm
and an encryption key.

The following are important areas of data encryption:

• Encryption-at-rest: For data residing on physical media, encryption needs to
protect against unauthorized access to the database files either from within the
operating system or to the physical disks themselves. Often this is handled by the
database working in conjunction with third-party software vendors which deny
data access to anyone who does not possess an appropriate encryption key or is
otherwise noncompliant with the configured security policy. Some examples of
these vendors include Vormetric, Gemalto, Protegrity, and Amazon’s encrypted
EBS. DBaaS providers often include encryption-at-rest using the underlying cloud
provider capabilities.

• Encryption-in-transit: Data often does not sit purely in a single database location.
It is constantly on the move, being read, written, and replicated over networks.
This movement requires an additional level of protection. Whether the data is
moving between nodes in a single cluster within a data center, between data
centers around the world, or out to mobile edge nodes, it is important to ensure
that the database vendor provides robust encryption of data while in transit.

GUIDE 18

• Field-level encryption: This provides an extra layer of protection on specific
values by encrypting user data before saving to the database itself. Not only is
it encrypted over the network and on disk, but requires a separate key from the
application to decrypt.

• Encrypted backups: Backups contain a large volume of data and providers should
provide options for encrypting this aspect of your data management.

DATA RETENTION, SOVEREIGNTY, AND AUDITING
Protecting data is only part of the equation – many regulations also require
organizations to show how that protection is being maintained. Policies vary by
continent, country, and even state/region. The handling of government data brings in
other rules and regulations.

• Retention: This allows administrators to set policies about how long data is kept,
in what manner, and the expiration processes. Retention rules can be applied to
entire databases or data subsets.

• Sovereignty: Needing to filter out data subsets for different regions is a very
common requirement, but not necessarily an easy one when working with
large datasets on a global scale. Sophisticated replication technologies are built
into some database platforms that allow fine-grained controls and automated
replication based on those controls.

• Auditing and reporting: In alignment with regulatory needs and business needs,
organizations need to be able to audit their data and report out the status of data,
both current and historical.

Hosted data security
If choosing to utilize a Database-as-a-Service, ensure that your DBaaS vendor
provides sophisticated, multilayer security technologies and 24/7 monitoring.
Systems should include things like private networking and encryption while data is
both at rest and in flight. Often DBaaS vendors will provide detailed whitepapers on
their Trust Center webpages.

Here are some areas to think about as related to security for data hosted with a
database vendor:

• Governance, risk, and compliance: It is important to understand how a vendor’s
Infosec team maintains information security policies, risk management processes,
and compliance with regulatory and industry standards relevant to information
security. Often organizations will publish detailed policy descriptions and controls.

• Corporate operational security: DBaaS providers should have established
operational requirements to support the achievement of service commitments
to customers, relevant laws, and regulations. Some of the important operational
areas include:

• Incident management: Having policies and procedures in place in case
incidents occur

GUIDE 19

• Vendor risk management: To minimize risk in working with outside vendors

• Vulnerability management: Policies for protecting infrastructure

• Endpoint security: For example, antivirus detection for all devices

• Data classification and retention: For example, mandating specific
protections for different information types

• Corporate network protection: Providers must ensure networks and entry
points are protected against unauthorized access and have mechanisms in place
to prevent efforts like distributed denial of service attack (DDoS) protection.
A DevOps team should be involved to proactive monitor systems, networks,
hardware, and software within the environment.

• Compliances/regulations: Your hosted data should be protected in many
layers. Vendors have a variety of ways to demonstrate their commitment to that
protection. One of these is through meeting compliance standards. There are
many standards, most of which are industry-specific. The most common of which
is SOC 2 compliance.

As every organization and application has different security requirements,
vendors may be able to meet the requirements even if particular compliance is
not complete. It is best to engage with a vendor regarding security to ensure all
your needs are met.

CONCLUSION

There are many factors like speed, flexibility, time to market, and costs to consider
when choosing a database platform to ensure it aligns with your application
requirements. Choosing the right database platform is not easy. Many enterprises
turn to Couchbase to improve resiliency and performance, reduce data sprawl, and
lower total cost of ownership. Today, 30% of the Fortune 100 manage critical data
with Couchbase.

GETTING STARTED
Want to test-drive Couchbase? Sign up to try Capella, our Database-as-a-Service, for
free. The service provides several sample datasets, data access tools, and tutorials
to get you started. For those who are adventurous and want to jump right in, they
can load their own data, connect an application, and start using features like SQL++
with various services such as Analytics, Full-Text Search, Vector Search, and Eventing.
Mobile developers can explore Capella App Services, with an embeddable Couchbase
Lite and sophisticated syncing technology.

ADDITIONAL INFORMATION
Here are several other ways to learn more about building with Couchbase:

• Tutorials and quickstarts

• Developer learning paths

• Couchbase integrations (frameworks, AI, connectors, tools, DevOps)

https://www.couchbase.com/customers?ref=blogf=blog
https://www.couchbase.com/customers?ref=blogf=blog
https://blog.couchbase.com/a-story-of-how-multimodel-databases-can-reduce-data-sprawl-told-in-the-pixar-style/
https://blog.couchbase.com/low-tco-with-couchbase/
https://cloud.couchbase.com/sign-up
https://developer.couchbase.com/tutorials
https://developer.couchbase.com/learn
https://www.couchbase.com/developers/integrations/

Modern customer experiences need a flexible database platform that can
power applications spanning from cloud to edge and everything in between.
Couchbase’s mission is to simplify how developers and architects develop,
deploy and run modern applications wherever they are. We have reimagined
the database with our fast, flexible and affordable cloud database platform
Capella, allowing organizations to quickly build applications that deliver
premium experiences to their customers – all with best-in-class price
performance. More than 30% of the Fortune 100 trust Couchbase to power
their modern applications. For more information, visit www.couchbase.com
and follow us on X (formerly Twitter) @couchbase.

© 2025 Couchbase. All rights reserved.

https://couchbase.com

	Introduction
	Choosing a database platform
	Setting up and configuring your database
	Learning your database platform
	Data modeling
	Ease of development
	Data access
	Development tools
	Production performance, high availability, and scalability

	Security and data protection
	Core database security
	Hosted data security

	Conclusion

