
EBOOK

Database
Advice Guide

Developer’s Guidebook

WHITEPAPER 2

This paper will cover:

• Areas to consider when
choosing a database
platform

• Setting up and configuring
your database

• Ease of use

• Production performance,
high availability, and
scalability

• Security and data
protection

INTRODUCTION

The database is one of the most important parts of a software system, whether for
an application or a data warehouse project. As such, this document offers a virtual
checklist that you can use when evaluating a database.

Don’t underestimate the work that you need to spend in planning your data
needs and scope. Picking a database is a long-term commitment. The database
is the foundation of your application and provides secure, reliable storage and
access to all of your information. And without trustworthy data, you don’t have
much of an application. This paper will focus on operational databases, those
technologies designed as the data storage and data access support for application
or microservices development. These databases have different attributes than
pure analytical data warehouses, data marts, and data lakes, such as Snowflake
or Databricks, which are used to aggregate data from a wider range of sources,
requiring some extraction, transformation, and load (ETL) processes to bring data
into the database. Additionally, the queries are often much more analysis-based than
in an operational database.

There are hundreds of databases and data-related platforms on the market. There
are many ways to narrow down the scope and the following sections examine some
of the most immediate choices.

The first question you will likely need to answer is, “Do I want to use a relational
database?” And if so, what are the features I think I need in a relational database
versus what I can have with a NoSQL database? Relational databases or relational
database management systems (RDBMS) represent around 80% of the operational
database market.

Relational databases
A RDBMS is structured on the relational model of data that organizes information
into one or more tables of rows and columns, that are related to each other with
a unique key for each row. Typically, different entity types (e.g., product or region)
that are described in a database have their own table with the rows representing
instances of that type of entity and the columns representing values attributed to
that instance. Each row in a table has its own specific key and rows can be linked
to rows in other tables by storing the unique key of the target row (“foreign key”).
The linking of tables together allows for data to be set up in a way where data is
not duplicated in the database, making storage very efficient. In order to get the
best of a relational database, its schema (table and relational layout) is planned
well in advance and tends to be difficult to change without significant changes to
the application. This design rose to popularity from the 70s through the 90s when
storage was very costly.

CHOOSING A DATABASE PLATFORM

RELATIONAL DATABASES

OR RELATIONAL DATABASE

MANAGEMENT SYSTEMS

(RDBMS) REPRESENT AROUND

80% OF THE OPERATIONAL

DATABASE MARKET.

WHITEPAPER 3

Nearly all RDBMSs use SQL (Structured Query Language) as the language for
querying and updating the database. The SQL language had two big advantages
over older read-write APIs. First, it gave rise to the idea of accessing many records
with one single command, and second, it eliminated the need to specify how to
reach a record. It is essentially a declarative language, but it also includes procedural
elements. With the combination of organized table structure design and an easy-
to-use query language, relational databases became quite popular due to their
simplicity, robustness, transactional performance, and compatibility in managing
data with other systems. For example, a fairly simple SQL SELECT statement could
have many potential query execution paths. The RDBMS determines the best
“execution plan” using features such as a costbased optimizer to choose the correct
indexes and paths.

The challenge for the relational database comes typically in two main areas: flexibility
and scalability. As previously mentioned, the schema design of the database is
often developed in the early stages of application development, with table design
and key relationships intended to stay fairly static. Unfortunately, as the needs
of the application change or as the desire to add new features evolves (often due
to business changes) there is a need to redesign the schema. This often requires
analysis to see the knock-on effects of the change and it may involve a database
administrator (DBA) or other parts of an organization if they are using or contributing
data to the same database. The other key challenge is scalability. Relational
databases scale up well on a single machine but work less effectively when scaling
out across multiple servers that can distribute the load. During attempts to scale
to hundreds or thousands of servers, the complexities become overwhelming. The
characteristics that make relational databases so appealing are the very same that
also drastically reduce their viability as platforms for large distributed systems.

Relational Database Pros Relational Database Cons

• Strong support for data integrity
and transactions

• Highly functional/popular query
language including “joins” between
tables

• Powerful indexing capabilities,
query planning, and cost-based
optimization

• Rigid structure slows ongoing
application evolution – less capable
with semi-structured data

• Scalability challenges and high costs

• Overly efficient schema design can
result in many tables and joins,
which can impact read and write
speeds

Examples of relational
databases include:

• Amazon Aurora

• IBM Db2

• Microsoft SQL Server

• MySQL

• Oracle

• Postgres

WHITEPAPER 4

OVERALL, NOSQL DATABASES

ARE DESIGNED TO GIVE

DEVELOPERS MORE FLEXIBILITY

IN HOW THEY STORE AND

RETRIEVE DATA.

NoSQL databases
Non-relational databases, often referred to as NoSQL databases (short for “Not only
SQL”), are designed to store and retrieve data that are not stored in relational table
format. The most common types of NoSQL databases are key-value store, wide
columnar, document, graph, and time-series.

• Key-value store: The simplest form of a NoSQL database, data elements are
stored in key-value pairs that can be retrieved by using a unique key for each
element. Values can be simple data types like strings/numbers or complex objects.
Great speed can be achieved via key-value access.

• Document databases: Store data in JSON, BSON, or XML documents, in a form
that is much closer to the data objects used in applications. This means less
translation is required to use the data in the applications. Collections are a virtual
grouping of documents used to help organize information. Documents provide
great flexibility to change the database as the application evolves.

• Graph databases: Focusing on the relationship between the elements, data
is stored in the form of nodes. Connections between nodes are called links or
relationships. The goal is to be able to easily identify the relationship between the
data by traversing the links.

• Time-series databases: Operate on data that is evaluated at regular intervals
such as stock feeds or operating system activity logs. Here, the ability to zoom in
and out at different granularity levels (from minutes to days, for example) may
reveal a variety of trends from the data.

• Wide columnar databases: Stores the data in columns instead of rows, which
is often helpful in running analytics across a small number of columns. This
approach is both memory and processing efficient, even when large amounts
of data are stored.

Overall, NoSQL databases are designed to give developers more flexibility in how
they store and retrieve data. These newer databases are also architected to improve
horizontal scaling by leveraging distributed architectures. Nodes can be added
and changed without requiring changes to the application, with data automatically
replicated to new nodes. This also often results in better uptime with less work
required. These systems were designed for the world of big data and modern
architectures like agile development, CI/CD, and serverless. Some NoSQL databases
have proprietary query languages, while others have adopted SQL. Advanced
databases offer sophisticated indexing technologies, ACID transaction support,
and even cost-based optimizers. While most have been in development for far less
time than relational databases, some NoSQL databases provide many of the same
capabilities of a RDBMS.

WHITEPAPER 5

NoSQL Database Pros NoSQL Database Cons

• Flexible schemas/schemaless

• High availability with less
maintenance

• Automated scaling

• Versatile/specialized data modeling

• Potentially limited indexing
(depends on type)

• Less data integrity and consistency
is possible

• Less familiar to the industry

• Data duplication

Performance
Performance is another important area to consider when choosing your database.
Almost all databases will work quickly at a small scale with limited numbers of nodes,
data, and users. While you may not have full clarity on the expected growth of your
application and database in the future, the more you know the better you can select
the right database. Two typical measures of performance are throughput (operations
per second) and latency, which measure the round trip time between a client and the
database. For NoSQL databases, the industry standard for measuring performance
is the Yahoo! Cloud Serving Benchmark (YCSB). A neutral third party, benchANT,
publishes performance results from several products and vendors. The latest figures
can be found on their site: https://benchant.com/ranking/database-ranking.
Further information about performance is provided later in this paper.

Data access
Getting data out and into a database is critical. While SQL is the most common
database language, it is not the only method to read and write data. Some databases
are very limited in how one can access data, while others provide a variety of ways
to get at the data. Key-value APIs use gets and puts for simpler and often faster
data retrieval. Fuzzy search queries, also known as full-text search, can be a very
useful database feature, providing search functionality for users within applications.
Another option rising in popularity is GraphQL, which works with highly connected
datasets. Depending on the combination of your present and future needs, ensure
your database has your querying needs covered. It should also come with a software
development kit (SDK) for different popular programming languages. Having many
query options makes a database multi-model and lets developers do more in one
database, which can reduce vendor and data sprawl. See this blog post on how the
two are related.

Cloud strategy
As cloud services become more capable and help to reduce costs, moving your
database to the cloud can likely offer flexibility, affordability, and scalability, but there
are many ways to run in the cloud. Some organizations may prefer to self-manage
in the cloud, giving them absolute control over their configuration and data, yet still
getting the benefits of scalable infrastructure. Additionally, many look to automate

Examples of NoSQL
databases include:

• Cassandra

• Couchbase

• Cosmos DB

• DynamoDB

• MongoDB™

• Redis

• Neo4j

https://benchant.com/ranking/database-ranking
https://blog.couchbase.com/a-story-of-how-multimodel-databases-can-reduce-data-sprawl-told-in-the-pixar-style/

WHITEPAPER 6

self-management in some way using containers and Kubernetes. This makes it
easier to administer a database once it is up and running and over time. For those
looking for even less management, many database vendors now offer Databaseas-
a-Service (DBaaS) solutions. These let users provision clusters in a cloud provider
of their choice and leave the majority of administration up to the database vendor.
Alternatively, serverless databases further abstract the workings of the database and
make it very simple to get data in and out. For all of these choices, a critical decision
is the balance of control versus

Database-as-a-Service
A Database-as-a-Service typically runs on a cloud computing platform and is fully
managed as-a-service by a database provider. Database services take care of
replication, scalability, and high availability, making the underlying software more
transparent to the user. Depending on the database you choose, it will either be
easier or harder to build different functionality into the app and evolve it over time.
Some databases provide very specific capabilities, while others are more broad and
flexible. Cloud providers like AWS, Google Cloud, and Microsoft Azure offer a variety
of DBaaS offerings, each focused on specific capabilities. Sometimes that selection
can be more confusing than helpful. The good news is choice means more options
for you to find a great DBaaS. Many cloud databases on the market offer common
features that are all different in some way.

Mobile usage
Will your DBaaS need to sync data to a mobile or edge application? If so, you should
consider the options for an embeddable database that can be synced with a central
clustered cloud database. This brings the advantages of always-on apps regardless of
web connectivity and speed. With a smart syncing and storage strategy, users will be
able to quickly and easily search, update, and analyze data at the edge.

Analytics
As stated at the beginning, the focus of this paper is operational databases and
not pure analytical databases, which doesn’t mean that no analysis happens in
an operational environment. Analysis is of course a very broad term. Analysis
performed on the data tied to an operational dataset is often only used for one
application. And by not having to move the data to a data warehouse, users can
examine data in near-real time. The industry refers to this as hybrid transaction/
analytical processing (HTAP) or hybrid operational and analytical processing (HOAP).
It “breaks the wall” between transaction processing and analytics, and enables more
informed and faster business decision-making. To help ensure that queries run
quickly at scale, some databases accelerate queries by utilizing a massively parallel
processing (MPP) engine.

WHITEPAPER 7

THE MOST POPULAR

LANGUAGE FOR INTERACTING

WITH DATA IS SQL.

Cost
Cost is always a factor when choosing a database. While most databases offer some
sort of free tier or community edition, it is often not enough to support a production
application. In planning for application deployment, you need to forecast your data
volume needs, identify the services needed to meet your functional requirements,
and understand the performance capabilities to meet your goals. Most vendors
provide detailed pricing information on their websites. Conducting a proof of concept
(PoC) is a good starting point to evaluate pricing. Understanding scalability also helps
you identify the sizing needs for scale to determine the overall cost in production.

Learning your database platform

EASY, QUICK SETUP
One of the keys to utilizing database management systems is a fast, simple setup.
In today’s dynamic work environments, users want data available on demand. The
traditional steps of procuring hardware, installing software, testing that the setup
was performed suitably, etc. are not feasible in the modern agile development life
cycle. For many organizations the solution is to move to a DBaaS model.

Database-as-a-Service (DBaaS) is a managed service that lets users access database
services without having to be concerned about managing infrastructure or software
updates. It is the easiest and fastest way to quickly and effectively deploy a modern
database. Basically, a fully managed cloud service eliminates your database
management efforts. A database cluster can be deployed in just a few clicks. All that
is required is to create an account and users are ready to quickly create clusters and
databases, import data, and utilize the available database services of a fully managed
DBaaS in a cloud environment.

INTUITIVE USER INTERFACE
An intuitive interface works the way the user expects. Allowing users to navigate
the UI instinctively while focusing on the tasks rather than struggling to navigate a
complex interface. While you may want to script common tasks and/or use an API to
manage your database, using a UI to explore and visualize data can be very helpful.

FAMILIAR SQL SYNTAX SUPPORT
The most popular language for interacting with data is SQL. SQL is a language that
has been around in relational databases since the 1970s, and has expanded to
SQL++ for use with non-relational JSON document databases. Whether you’re looking
at relational or non-relational databases, robust SQL support means that many
database and query skills will translate from database to database, and will help
your team to ramp up on a new database faster without needing to hire experts in a
proprietary query language.

SETTING UP AND CONFIGURING YOUR DATABASE

WHITEPAPER 8

Data modeling

FLEXIBILITY
Data flexibility is an important capability that allows teams to more quickly and
efficiently respond to changing requirements. Document databases offer flexible
JSON models with the schema enforced by the application instead of the database.
Users can model data in a way that fits their application objects, nest documents, or
even emulate RDBMS models. JSON provides a simple, lightweight, human-readable
notation. It supports basic data types, such as numbers and strings; and complex
types, such as embedded documents and arrays. JSON provides rapid serialization
and deserialization and is a very popular REST API return data type.

DENORMALIZING RDBMS DATA
One of the many advantages of using a document-based database is the ability
to use a flexible data model to store data without the constraints of a rigid,
predetermined schema. When moving from an RDBMS data model to a NoSQL
document model a common practice is to denormalize the data. Main RDBMS tables
and auxiliary tables are often combined as nested parent and child JSON documents.
However, it is also beneficial to consider how the data will be accessed since this
greatly influences the data modeling strategy. For instance, smaller documents
can be read/ written faster. Please note that denormalizing data will increase the
duplication of data and increase storage size. Storage costs have continued to
decrease every year, but still should be a consideration.

NESTED JSON DOCUMENTS
Nested JSON documents minimize the need for JOINs which makes data access
faster and more efficient. It can also greatly simplify the data model. A typical
RDBMS database architecture diagram has many more table objects than a NoSQL
architecture diagram has corresponding collections. But it is important to note that
with this approach, documents will be larger. If your model gravitates toward large
documents, it’s important to make use of sub-document APIs when possible (APIs
that allow partial reading/writing of documents).

JOIN SUPPORT
In the NoSQL document database world, SQL is uncommon, and JOINs are more so
(but not completely absent anymore). Just as in a relational model, a JOIN clause can
be used to create new objects by linking two or more source objects. Look for the
following types of joins, and if they are supported:

• ANSI JOIN (joining between multiple documents on an arbitrary field)

• Lookup JOIN (joining between multiple documents based on their ID or document
key joined with an arbitrary field)

• Index JOIN (the reverse of a lookup join, requiring an index)

When exploring a distributed document database, JOIN support across shards/
partitions also needs to be considered, as they aren’t always supported.

WHITEPAPER 9

RDBMS CONCEPTS
Key concepts such as tables are widely understood. Many of these concepts can be
mapped to a (roughly) equivalent feature in document databases.

RDBMS Document DBMS

Schema Scope

Table Collection

Row Document

Primary key Document key

Index Index

ACID TRANSACTIONS
Relational databases must support ACID transactions, due to the nature of their
data modeling requirements. ACID transactions are required so that you are assured
that the data you want to retrieve is what has been updated in a previous event and
cascaded across tables throughout your database. Additionally, ACID guarantees are
important for distributed activity and high availability requirements. JSON document
databases have often initially skipped ACID transactions in favor of performance,
but many of these NoSQL databases are now supporting ACID transactions. With
the SQL++ query language, multi-document ACID transactions can be achieved and
use the common syntax of BEGIN, COMMIT, and ROLLBACK. Again, there may be
limitations based on sharding/partitioning, so if your application needs to perform
transactions between shards, check to make sure what support is available (if any).

Ease of development
Familiarity, industry standards, and good documentation all help in ramping up
development efforts to accelerate developer productivity.

CRUD
A common way to get familiar with a database and its SDK is by writing a CRUD
application. CRUD stands for:

• Create

• Read

• Update

• Delete

These are key developer actions that also serve as very useful coding examples. The
time it takes to get a CRUD example up and running can help to familiarize you with
the basics, and give you a baseline to evaluate more complex operations.

WHITEPAPER 10

DBaaS
A DBaaS solution means there is less maintenance required as compared to
managing database software yourself. Users can sign up and start working without
having to worry about software setup, installation, patches, or even system updates.
This allows users to focus on utilizing the platform and not “yak shaving.”

SUPPORTED ACCESS SERVICES
In a relational database, SQL is the only way to work with data. For NoSQL databases,
there are many other services that could be available (including SQL++). Full-text
search (browserlike), analytic queries, embedded mobile database syncing, database
event triggers, key-value access, and in-memory cache performance enhancement
are all examples of services that may be included in a database. You could take a
“polyglot persistence” approach and use a different database for each service, but
this multiplies the maintenance and integration work (more “yak shaving”). Even if
you don’t plan to use all these services from the beginning, choosing a database that
has these features ready to go can save you time, and provide a form of “future-
proofing.” Not to mention this approach can minimize “database sprawl” which can
turn into an architectural nightmare.

Data access

MULTI-MODEL DATA ACCESS
A “multi-model” database is one that can support multiple access methods upon
the same pool of data. The system provides unified data management, access
and governance, among other key features. For example, Couchbase provides the
following ways of interacting with data:

• Key-value: The ability to read/write data via a fast “key” lookup, given Couchbase’s
memory-first architecture, and is great for simple use cases and ultra-fast
performance.

• SQL++: The world’s most popular language for querying data; SQL syntax support
is a database industry standard data access method.

• Full-text search (FTS): A text “search engine” for data that also supports
geographybased searches, fuzzy search, faceting, etc.

• Analytics: Query data with complex, ad hoc SQL++ queries, in an isolated
environment with multi-tenant support.

• Eventing: Developers can write JavaScript functions that respond to data
change events.

These various data access methods help to minimize sprawl and include the
efficiency benefit of users not having to learn multiple data management systems.
This in turn reduces application development time and time to production.

https://martinfowler.com/articles/nosql-intro-original.pdf

WHITEPAPER 11

SDKS, BIG DATA CONNECTORS, AND RELATED TOOLS
Developers generally access data via specific language-based SDKs (or ODBC/
JDBC connectors in some circumstances). While your team may be focused on one
language, it’s important to evaluate the available SDKs, should the need for other
languages come up in the future. Here’s a sample checklist of SDKs:

Server-Side SDKs Mobile/Desktop SDKs

Java Java (Android)

Scala Java (Desktop)

.NET Xamarin (.NET)

C/C++ MAUI (.NET)

Node.js Swift

PHP Objective-C

Python C/C++ (embedded)

Ruby

Go

Kotlin

Rust

JDBC for Tableau

Also check for available big data connectors and other tools for real-time analytics,
streaming, data modeling, and search platforms. Some include:

• Kafka

• Spark

• Elasticsearch (ELK)

• CData

• Erwin

• Tableau

WHITEPAPER 12

WHILE MANY OF

THESE TASKS CAN BE

ACCOMPLISHED WITH A

UI, HAVING COMMAND

LINE TOOLS AVAILABLE

IS IMPORTANT AND CAN

PROVIDE EFFICIENCY

AND INTEGRATION WITH

OTHER COMMAND

LINE TOOLS THAT YOU

ARE ALREADY USING.

Development tools

COMMAND LINE TOOLS
CLI tools can be helpful for developers, DBAs, and DevOps alike. Some tools to look
for include:

• Exporting data

• Importing data

• Creating backups

• REPL for SQL or SQL++

• Configuration and settings

While many of these tasks can be accomplished with a UI, having command line
tools available is important and can provide efficiency and integration with other
command line tools that you are already using.

DATABASE IDES/SQL EDITORS
There are numerous editors or database IDEs available. You may already have
licenses for them, or be familiar with them through your organization. Some popular
choices include:

• JetBrains DataGrip – An IDE designed for SQL developers and database
professionals. With it, you can write SQL in an intelligent query console with
autocomplete, connect to multiple database servers/clusters, run queries, and
much more. It’s built on the IntelliJ IDEA platform, one of the top IDE platforms in
the world.

• DbVisualizer – A popular tool utilized by developers and DBAs across platforms.

• SQL Server Management Studio (SSMS) – A tool primarily used by SQL Server
Database developers but that can be connected to the Couchbase platform.

These tools may provide native support and/or generic ODBC/JDBC support.

JSON FORMATTERS/VALIDATORS/PARSERS/HELPERS
JSON formatters and validators are helpful when working with JSON documents.
Most of the IDEs listed above also feature JSON plugins.

There are also popular and easily accessible web-based JSON tools:

• JSON Parser

• JSON Lint

• JSON Editor Online

https://jsonformatter.org/json-parser
https://jsonlint.com/
https://jsoneditoronline.org/

WHITEPAPER 13

Production performance, high availability,
and scalability
As enterprise projects move from development to production, the needs for stability
and operational reliability become paramount. Developers needing these features
of distributed systems look to NoSQL databases to deliver them. These enterprise
production features provide the benefits of high availability, performance,
and scalability.

HIGH AVAILABILITY
High availability (HA) and disaster recovery (DR) are two of the driving reasons
to move from a traditional RDBMS to a NoSQL-based system. High availability,
as a concept, allows operations to guarantee certain levels of performance. This
is not limited to system performance only, but also addresses recovery, failures,
automated fixing of issues, backup, upgrades, and more.

NoSQL databases often support distributed database clustering, which helps deliver
high availability. These databases also focus on the need for simple management
and reducing interruptions to normal functioning. For example, operations can
be done while the system remains online, without requiring modifications or
interrupting running applications. All nodes do not need to be taken offline at the
same time for routine maintenance such as software upgrades, index building,
compaction, hardware refreshes, or other operations. Even provisioning new nodes
or removing nodes can be done online without interruption to running applications,
and without requiring developers to modify their applications.

Additionally, built-in fault tolerance mechanisms protect against downtime caused
by arbitrary unplanned incidents, including server failures. Replication and failover
are important mechanisms that increase system availability. For example, data
can be replicated across multiple nodes to support failover scenarios. Ensuring
that additional copies of the data are available is automated to deal with the
inevitable failures that large distributed systems are designed to recover from. This
functionality is provided automatically without the need for manual intervention
or downtime.

To deliver increased high availability, disaster recovery, and geographic load
balancing, entire clusters should also be replicated to one or more alternate
geographical locations. Often this creates additional challenges in linking clusters
that span across a wide-area network (WAN) rather than simply extending local-
cluster replication, but the benefits are often extremely valuable to global
products/companies.

For disaster recovery, customers can maintain a passive cluster (target) in addition to
an active cluster (source) as part of their business continuity plan. This is extremely
beneficial when the disasters occur at a data center or regional level. Backup and
recovery processes are still essential components of disaster recovery and can also
be distributed to reduce network overhead and related performance costs. The use
of external blob or object storage services can help to store backup data close to the
operational cluster for when it’s needed.

WHITEPAPER 14

SPEED AND PERFORMANCE
Clustered NoSQL environments can use commodity hardware, no supercomputer
or massive scaled-up machines are necessary – this is by design. Anyone can have a
superfast database if they spend millions on an extreme machine. But NoSQL users
gain the benefits of scale-out – using many (virtual) machines to share the load –
using normal or moderate server offerings or cloud instances.

The power of a cluster of nodes allows operations to be “smartly” distributed to
handle workloads in an efficient manner. Additional nodes can be provisioned
to help add specific capabilities to perform better (e.g., more data storage or
increased memory allocations). Distributed designs make performance at massive
scale possible. As workloads increase, more nodes can be added without having
to upgrade the existing nodes with more RAM, CPU, etc. Part of that distributed
system design relies on a “shared nothing” architecture – each node manages its own
resources including storage and processing. Additional nodes added for particular
services, such as full-text search or big data analytics, can also use their own nodes
without impacting performance of the others.

Replication and sharding are fundamental to automatically distributing data across
nodes in a cluster. Thus, the database can grow horizontally to share load by adding
more RAM, disk, and CPU capacity without increasing the burden on developers
and administrators. This type of hardware efficiency is gained by employing
asynchronous, non-blocking I/O for effective utilization of server resources. This
helps increase both the storage I/O efficiency and the number of simultaneously
connected clients per node.

NoSQL database architectures help workloads be evenly distributed across cluster
nodes, to reduce bottlenecks and allow users to take full advantage of the available
hardware. The end result is higher performance, better utilization, and improved
TCO as overprovisioning can be avoided.

SCALABILITY
There are several ways to scale a database platform. Scaling is not only about
increasing RAM or storage, but also about adjusting specific services that are
available. If a cluster has, for example, a JSON query service on one node but it is
getting overutilized, then another similar node should be added or adjustment
should be made to increase RAM and CPU settings. A system should allow users
to optimize services alignment to hardware over time, as rarely does the needs of
an application grow linearly for all of the data services that it is using. During these
optimization changes, the team should not have to worry about how to replicate
data or queries to those services. The system should just know that it has to adjust
those services behind the scenes.

Clustered computing in itself is a very wide field of concepts and approaches that
NoSQL databases adopt. Various cluster configurations are used depending on the
need for performance versus high availability, etc. For example, NoSQL clusters
can implement peer-to-peer architectures, support active-active configurations,
flexible topology including multi-master bidirectional ring topology, simplified
administration, and filtered replication (where only certain data is replicated).

WHITEPAPER 15

Decentralization of resources and parallelized streams (e.g., for replication) are
essential to having a fully scalable platform. But scalable clusters are also reliant on
having easy management when needing to expand the cluster. Keeping the cluster
online reduces any downtime or service disruptions.

When adding more nodes to a cluster, the database needs to be able to duplicate
data and services from one node before taking it online. NoSQL databases that cover
this well, also use concepts such as rolling upgrades where individual nodes are
updated without being taken offline. This can help when replacing a node, adding
another node, scaling up a node with more resources, etc.

Security is an ongoing battle between organizations and hackers. In considering
a database and its implementation, the one big question is often whether the
database will be self-managed or fully managed by the database provider. Both will
require many security considerations, but for Database-as-a-Service offerings, there
are additional aspects that will need to be considered.

Core database security

ACCESS CONTROL
Access control is the first core building block for securing data from a business and
regulatory standpoint. The most basic level of security is who is allowed to access
the data (authentication), which data (authorization), and how are we sure it is only
those users. This applies to both users and applications seeking to access data. Best
practices lay out two concepts: separation of duties and least privileged access.

• Authentication: Determines who is attempting to access the data. Users must
be clearly and strongly authenticated. While this will depend on an organization’s
own standards and capabilities, certificate-based authentication is commonly
the strongest form vendors provide. Database companies often use different
models like:

• Password-based: Built-in password authentication for both users and
applications, where password strength policies are set based on
complexity of the password, lifecycle, updating of the password, etc.
Credentials transmission should be encrypted with transport-level
security and/or hashed.

• Certificate-based: Certificates like X.509 provide an additional layer of
security where the certificate authority validates identities and issues
certificates.

• Third-party/external authentication: This allows you to plug into
authentication platforms that organizations already have in place based
on technologies like LDAP or Active Directory layer.

SECURITY AND DATA PROTECTION

SECURITY IS

AN ONGOING

BATTLE BETWEEN

ORGANIZATIONS

AND HACKERS.

WHITEPAPER 16

• Authorization: Once a user has been authenticated, authorization determines
what a user or application is allowed to do with data. Sophisticated databases
employ rolebased access control (RBAC) where users are mapped to roles that
determine the actions they are authorized to perform. Commonly the roles
between administrators/ users and applications/data access are separated. Each
user may have zero or more roles which can be as broad or as restrictive as
required, from a full administrator having access to all administrative functions
and data, to an analyst with read-only access to a limited dataset.

Securing data means of course protecting data within your database and beyond.
For on-premises, self-managed solutions the entire security environment must be
managed. There are many areas to consider, but a few key areas include:

• Physical security: Buildings, data centers, servers

• Network security: Firewalls, IP tables, WAN encryption

• Operating system: User management, security patches, and updates

• Application: Credentials

• Key management: Rotation, revocation, remediation

ENCRYPTION
Another critical aspect of privacy and data protection is encryption. The goal
is to make sure that sensitive information is not made available in the case of
unauthorized access. To do so, unencrypted data (commonly referred to as plain
text) is encrypted by using an algorithm and an encryption key. Doing so creates a
ciphertext that can only be seen in its original form when decrypted with the correct
encryption key. Encryption should be done for both data and metadata.

The following are important areas of data encryption:

• Encryption at rest: For data residing on physical media, encryption needs to
protect against unauthorized access to the database files either from within the
operating system or to the physical disks themselves. Often this is handled by
the database working in conjunction with third-party software vendors which
deny data access to anyone who does not possess an appropriate encryption
key or is otherwise noncompliant with the configured security policy. Some
examples of these vendors include Vormetric, Gemalto, Protegrity, and Amazon’s
encrypted EBS.

• Encryption in transit: Data often does not sit purely in a single database location.
It is constantly on the move, being read, written, and replicated over networks.
This movement requires an additional level of protection. Whether the data is
moving between nodes in a single cluster within a data center, between data
centers around the world, or out to mobile edge nodes, it is important to ensure
that the database vendor provides robust encryption of data while in transit.

• Data-level encryption: This provides an extra layer of protection by encrypting
user data within the database itself. Not only is it encrypted over the network and
on disk, but requires a separate key from the application to decrypt.

• Encrypted backups: Backups contain a large volume of data and providers should
provide options for encrypting this aspect of your data management.

WHITEPAPER 17

DATA RETENTION, SOVEREIGNTY, AND AUDITING
In order to not just secure data, but to prove to others that data is being
protected, various regulations have been enacted to set rules. Determining what
data is retained, where, and for how long is becoming a critical function of data
management. Often policies vary by continent, country, and even state/region. The
handling of government data brings in other rules and regulations.

• Retention: This allows administrators to set policies about how long data is kept,
in what manner, and the expiration processes. Retention rules can be applied to
entire databases or data subsets.

• Sovereignty: Needing to filter out data subsets for different regions is a very
common requirement, but not necessarily an easy one when working with
large datasets on a global scale. Sophisticated replication technologies are built
into some database platforms that allow fine-grained controls and automated
replication based on those controls.

• Auditing and reporting: In alignment with regulatory needs and business needs,
organizations need to be able to audit their data and report out the status of data,
both current and historical.

HOSTED DATA SECURITY
If choosing to utilize a Database-as-a-Service, ensure that your DBaaS vendor
provides sophisticated, multilayer security technologies and 24/7 monitoring.
Systems should include things like private networking and encryption while data is
both at rest and in flight. Often DBaaS vendors will provide detailed whitepapers on
their Trust Center webpages.

Here are some areas to think about as related to security for data hosted with a
database vendor:

• Governance, risk, and compliance: It is important to understand how a vendor’s
Infosec team maintains information security policies, risk management processes,
and compliance with regulatory and industry standards relevant to information
security. Often organizations will publish detailed policy descriptions and controls.

• Corporate operational security: DBaaS providers should have established
operational requirements to support the achievement of service commitments
to customers, relevant laws, and regulations. Some of the important operational
areas include:

• Incident management: Having policies and procedures in place in
case incidents occur

• Vendor risk management: To minimize risk in working with
outside vendors

• Vulnerability management: Policies for protecting infrastructure

• Endpoint security: For example, antivirus detection for all devices

• Data classification and retention: For example, mandating specific
protections for different information types

WHITEPAPER 18

• Corporate network protection: Providers must ensure networks and entry
points are protected against unauthorized access and have mechanisms in place
to prevent efforts like distributed denial of service attack (DDoS) protection.
A DevOps team should be involved to proactive monitor systems, networks,
hardware, and software within the environment.

• Compliances/regulations: Your hosted data should be protected in many
layers. Vendors have a variety of ways to demonstrate their commitment to that
protection. One of these is through meeting compliance standards. There are
many standards, most of which are industry-specific. The most common of which
is SOC II compliance.

As every organization and application has different security requirements,
vendors may be able to meet the requirements even if particular compliance is not
complete. It is best to engage with a vendor regarding security to ensure all your
needs are met.

There are many factors like speed, flexibility, time to market, and costs to consider
when choosing a DBaaS to ensure it aligns with your application requirements.
Choosing the right cloud database platform is not easy. To support important
applications, many enterprises choose Couchbase to improve resiliency,
performance, and stability, while reducing risk, data sprawl, and total cost of
ownership. That’s why 30% of the Fortune 100 manage critical data with the
Couchbase database platform.

Getting started
Want to test drive Couchbase? Sign up to try Capella, our Database-as-a-Service, for
a free trial. The service provides several sample datasets, data access tools, and
tutorials to get you started. For those who are adventurous and want to jump right
in, they can load their own data, connect an application, and start using features like
SQL++ with various services such as Analytics, Full-Text Search, and Eventing. Mobile
developers can explore the Couchbase mobile platform, with a robust embeddable
database and sophisticated syncing technology.

Additional information
Here are several other ways to learn and try Couchbase:

• Couchbase Playground

• Tutorials and quickstarts

• Developer learning paths

CONCLUSION

https://www.couchbase.com/customers?ref=blogf=blog
https://blog.couchbase.com/a-story-of-how-multimodel-databases-can-reduce-data-sprawl-told-in-the-pixar-style/
https://blog.couchbase.com/low-tco-with-couchbase/
https://blog.couchbase.com/low-tco-with-couchbase/
https://cloud.couchbase.com/
https://www.couchbase.live/
https://developer.couchbase.com/tutorials
https://developer.couchbase.com/learn

Modern customer experiences need a flexible database platform that can
power applications spanning from cloud to edge and everything in between.
Couchbase’s mission is to simplify how developers and architects develop,
deploy and consume modern applications wherever they are. We have
reimagined the database with our fast, flexible and affordable cloud database
platform Capella, allowing organizations to quickly build applications that
deliver premium experiences to their customers—all with best-in-class price
performance. More than 30% of the Fortune 100 trust Couchbase to power
their modern applications.

For more information, visit www.couchbase.com and follow us on Twitter.

© 2023 Couchbase. All rights reserved.

https://www.couchbase.com/

