
WHITEPAPER

High-Performance
Applications with

Distributed Caching
Get integrated caching from
a complete NoSQL solution

WHITEPAPER 2

Contents
EXECUTIVE SUMMARY 3

IMPORTANCE OF A CACHE IN ENTERPRISE ARCHITECTURES 4

Common use cases 4

KEY REQUIREMENTS 5

DISTRIBUTED CACHING WITH COUCHBASE SERVER 6

Architectural advantages 6

Caching and document performance benchmarking 9

WHY COMPANIES CHOOSE COUCHBASE 10

Combined technical advantage 11

COUCHBASE ALTERNATIVES 11

Limitations of Redis 12

Limitations of Memcached 13

BEYOND CACHING WITH A COMPLETE NoSQL SOLUTION 13

WHITEPAPER 3

EXECUTIVE SUMMARY

For many web, mobile, and Internet of Things (IoT) applications, distributed
caching is a key requirement, for improving performance and reducing cost. By
caching frequently accessed data—rather than making round trips to the backend
database—applications can deliver highly responsive experiences. And by reducing
workloads on backend resources and network calls to the backend, caching can
significantly lower capital and operating costs.

Distributed caching solutions solve for three common problems—performance,
manageability, scalability—in order to gain effective access to data in high-quality
applications.

High performance is a given, because the primary goal of caching is to alleviate the
bottlenecks that come with traditional databases. This is not limited to relational
databases, however. NoSQL databases like MongoDB™ also have to make up for
their performance problems by recommending a third-party cache, such as Redis, to
service large numbers of requests in a timely manner.

Caching solutions must be easy to manage, but often are not. Whether it’s being able
to easily add a new node, or to resize existing services, it needs to be quick and easy
to configure. The best solutions provide command line, GUI, DBaaS (database-as-a-
service), and REST APIs to help keep things manageable.

Elastic scalability refers not only to the ability to grow a cluster as needed, but also
refers to the ability to replicate across multiple data centers (cloud and/or on-prem).
Cross data center replication (XDCR) is a feature that is often missing or performs
poorly across many caching technologies. To achieve this scalability, several products
often have to be glued together, thereby decreasing manageability and greatly
increasing cost.

Based on Couchbase’s experience with leading enterprises, the remainder
of this document:

• Explains the value of caching and describes common caching use cases

• Details the key requirements of an effective, highly available, distributed cache

• Describes how Couchbase Server provides a high-performance, low-cost, and easy-
to-manage caching solution

• Explains key differences in architecture and capabilities between Couchbase
Server, Redis, and Memcached

CACHING CAN

BOOST APPLICATION

PERFORMANCE AS WELL

AS REDUCE COSTS.

Figure 1: The three common requirements for distributed caching solutions

WHITEPAPER 4

IMPORTANCE OF A CACHE IN ENTERPRISE ARCHITECTURES

Today’s web, mobile, and IoT applications often need to operate at large
scale: thousands to millions of users, terabytes (or even petabytes) of data,
submillisecond response times, multiple device types, and global reach. To meet
these requirements, modern applications are built to run on clusters in distributed
computing environments, either in enterprise data centers or on public clouds such
as Microsoft Azure, Amazon Web Services (AWS), or Google Cloud Platform (GCP).

Caching is a technology to boost application performance as well as reduce costs.
By caching frequently used data in memory—rather than making database round
trips and incurring disk IO overhead—application response times can be dramatically
improved, typically by orders of magnitude.

In addition, caching can substantially lower capital and operating costs by reducing
workloads on backend systems and reducing network usage. In particular, if the
application runs on a relational database like Oracle—which requires high-end, costly
hardware in order to scale vertically—a distributed, horizontally scaling caching
solution that runs on low-cost commodity servers can reduce the need to buy and
manage expensive resources.

Common use cases
Caching is used across numerous applications and use cases, including:

• Speeding up RDBMS – Many web and mobile applications need to access data
from a backend relational database management system (RDBMS)—for example,
inventory data for an online product catalog. However, relational systems struggle
with large scale, and can be easily overwhelmed by the volume of requests from
web and mobile applications, particularly as usage grows over time. Caching data
from the RDBMS in memory is a cost-effective technique to speed up the backend.

• Managing usage spikes – Web and mobile applications often experience spikes in
usage (for example, seasonal surges like Black Friday, Cyber Monday, during prime
time television, etc.). Caching can prevent the application from being overwhelmed
and can help avoid the need to add expensive backend resources.

Caching vs Buffering
Caching and buffering
are techniques that are
often conflated. While
many databases make
heavy use of memory
for buffering, this does
not mean they have a
managed cache. Buffering
stores transitory data in
memory temporarily while
it’s being read or written.
Caching stores data in
memory until it’s evicted.

Figure 2: High-level database cache architecture

CACHE

DATA ACCESS LAYER

1

1 Write to cache and database.

CACHE

2 Read from cache.

3 If no longer cached, read from database.

DATA ACCESS LAYER

APPLICATION TIER APPLICATION TIER

DATABASEDATABASE

... ...

32

...

... ...

...

WHITEPAPER 5

• Mainframe offloading – Mainframes are still widely used in many industries,
including financial services, government, retail, airlines, and heavy manufacturing.
A cache is used to offload workloads from a backend mainframe, thereby reducing
MIPS costs (i.e., mainframe usage fees charged on a “millions of instructions per
second” basis), as well as enabling completely new services otherwise not possible
or cost prohibitive utilizing just the mainframe.

• Token caching – In this use case, tokens are cached in memory in order to deliver
high-performance user authentication and validation. eBay, for example, deploys
Couchbase Server to cache token data for its buyers and sellers (over 100 million
active users globally, who are served more than 2 billion page views a day).

• Web session store – Session data and web history are kept in memory—for
example, as inputs to a shopping cart, real-time recommendation engine on an
e-commerce site, or player history in a game.

KEY REQUIREMENTS

Enterprises generally factor six key criteria into their evaluation. How you weigh
them depends on your specific situation.

• Performance: Specific performance requirements are driven by the
underlying application. For a given workload, the cache must meet and sustain
the application’s required steady-state targets for latency and throughput.
Efficiency of performance is a related factor that impacts cost, complexity, and
manageability. How much hardware (RAM, servers) is needed to meet the required
level of performance?

• Scalability: As the workload increases (e.g., more users, more data requests,
more operations), the cache must continue delivering the same steady-state
performance. The cache must be able to scale linearly, easily, affordably, and
without adversely impacting application performance and availability.

• Availability: Data needs to be always available during both unplanned and
planned interruptions, whether due to hardware failure or scheduled system
maintenance, so the cache must ensure availability of data with as much uptime
as possible, and be kept as “warm” as possible to ensure performance.

• Manageability: The use of a cache should not place undue burden on the
operations team. It should be reasonably quick to deploy and easy to monitor
and manage. All other things equal, simplicity is always better. Adding a cache to
your deployment should not introduce unnecessary complexity or make more
work for developers.

• Affordability: Cost is always a consideration with any IT decision, both upfront
implementation as well as ongoing costs. Your evaluation should consider
total cost of ownership, including license fees as well as hardware, services,
maintenance, and support.

What is a “warm” cache?
A “cold” cache is an empty, or
near-empty cache that is yet
to be filled with active data.
The benefits of caching will
not be reached until the cache
gets “warmer”, i.e. starts to
fill up with active data. Since
a cache uses memory, any
reboots or crashes, especially
with a non-distributed system,
will result in restarting with a
“cold” cache.

THE USE OF A CACHE

SHOULD NOT PLACE

UNDUE BURDEN ON THE

OPERATIONS TEAM. IT

SHOULD BE REASONABLY

QUICK TO DEPLOY AND

EASY TO MONITOR

AND MANAGE.

WHITEPAPER 6

DISTRIBUTED CACHING WITH COUCHBASE SERVER

Couchbase Server (and Couchbase Capella™ DBaaS) has become an attractive
alternative to caching tools like Redis and Memcached. It’s the only solution that fully
meets the requirements of modern web, mobile, and IoT applications that need to
support thousands to millions of users, handles large amounts of data, and provides
highly responsive experiences on any device.

For many enterprises, Couchbase hits the sweet spot by delivering performance,
scalability, and availability, while being easy to deploy and manage. Couchbase is an
affordable choice, with enterprise support available from Couchbase.

GENERAL-PURPOSE NoSQL DATABASE WITH MEMCACHED ROOTS
Couchbase Server is a general-purpose, document-oriented NoSQL database with
a strong caching heritage. Couchbase founders include the engineers who drove
Memcached development in conjunction with the engineers who open sourced it at
LiveJournal and were using it at Facebook. LiveJournal was one of the internet’s first
social networks, before Facebook and Twitter, and it faced frequent usage spikes as
well as continuously growing workloads that overwhelmed backend resources.

To solve those issues, LiveJournal engineers built Memcached as a high-performance
cache that’s “dead simple” to use. While it squarely met the goals for high
performance and simplicity, Memcached was not designed as a high availability
caching solution, so features like auto failover and cross data center replication
(XDCR) were not built into the product.

Architectural advantages
Couchbase Server was built for distributed caching with a focus on agility,
manageability, and scalability for mission-critical applications.

PERFORM AT ANY SCALE
• Memory and network-centric: Couchbase’s memory-first architecture, with

integrated document cache, was designed to deliver high-throughput rates in
distributed computing environments while providing submillisecond latency and
resource efficiency. The network-centric architecture with a high-performance
replication backbone allows new workloads to be added while maintaining
performance at scale.

• Always-on, edge-to-cloud: Couchbase is designed to be fault tolerant and
highly resilient at any scale and on any platform—physical or virtual—delivering
always-on availability in case of hardware failures, network outages, or planned
maintenance windows.

• Consistent performance at any scale: Couchbase is designed to provide
linear, elastic scalability for web, mobile, and IoT applications using intelligent,
direct application-to-node data access without additional routing and proxying
configuration and overhead.

IN DESIGNING COUCHBASE

SERVER, THE MEMCACHED

ENGINEERS EXTENDED ITS

HIGH PERFORMANCE AND

SIMPLICITY TO INCORPORATE

HIGH AVAILABILITY AND EASY

MANAGEABILITY.

A BENCHMARK RUN ON

GOOGLE CLOUD PLATFORM

SHOWED 50 NODES OF

COUCHBASE SERVER

SUSTAINED 1.1 MILLION

OPERATIONS PER SECOND.

TO DELIVER COMPARABLE

PERFORMANCE, APACHE

CASSANDRA NEEDED

300 NODES.

WHITEPAPER 7

• Workload isolation and optimization: Adding or removing nodes can be done
without any downtime or code changes. Couchbase’s Multi-Dimensional Scaling
(MDS) allows users to isolate their workloads while incrementally increasing access
to specific services on the cluster resources as needed.

MANAGE WITH EASE
• Global deployment with low write latency: Couchbase is often selected

specifically because of its simple and powerful active-active cross data center
replication (XDCR) capabilities that support varying types of replication topologies
(unidirectional and bidirectional in any combination).

• Flexible deployment options: Multiple methods of deployment are supported
including on-prem, hybrid, cloud, Kubernetes, and Couchbase Capella DBaaS.

• Consistent performance when adding microservices: Couchbase eases
management with automatic sharding, replication, and failover for easy scale
out and high availability. Autonomously maintain application availability across
upgrades, node failures, network failures, or even cloud provider failures (via
XDCR). All functionality is made available across physical, virtualized, public cloud,
container, and DBaaS environments.

• Full-stack security: End-to-end encryption of Couchbase data is available
both over the wire and at rest. Flexible security options are possible with role-
based authentication that supports LDAP, PAM, and X.509. Embedded data and
administrative auditing tools allow for robust control of enterprise data.

• Affordability: Licensing costs of Couchbase is typically a fraction of other
solutions like Oracle Coherence, often as much as 80% less. Couchbase Server
can be freely downloaded without any license fees, allowing you to prototype
and experiment with zero cost or risk. Couchbase Capella has a free trial, as well
as Basic, Developer Pro, and Enterprise pricing plans. Couchbase is designed
to run efficiently with data volumes that are larger than memory, not requiring
costly scale-out to more nodes just to fit more data in memory (like memory-only
caches, including Redis). And because Couchbase is far less complex to deploy and
manage, it takes fewer resources to support it.

DEVELOP WITH AGILITY
• Flexible schema for continuous delivery: Couchbase can handle both simple

and complex JSON documents. Developers can access data through a flexible
data model that adjusts as needed. A new field can be easily added and then
made available to queries. Schema changes are not onerous and do not result in
complex remapping or downtime while testing new data structures.

• Full-featured SQL for JSON: Standard SQL has been extended for JSON querying
and analytics to allow developers to use familiar database skills with Couchbase.

• Versatile data access patterns: Couchbase’s set of data access methods include
key-value lookup, SQL++ querying, full-text search, real-time analytics, and server-
side eventing—available across cloud, mobile, and edge devices.

WHITEPAPER 8

• No hassle scale out: Application code using Couchbase does not need to
change when a cluster grows in size—from development laptop to a multi-node
production deployment. No manual re-sharding or re-balancing is required by
any application, and cluster configuration information is all managed behind the
scenes by the topology-aware clients.

• Simplicity and ease of development: It’s easy for developers to work with
through the officially supported SDKs that are available for all popular languages
(Java, .NET, Python, PHP, Node.js, Go, and C). Rich integration is available via
frameworks and components such as Spring Data, Apache Spark, LINQ, and more.

Figure 3: Architecture of deploying a Couchbase Server cluster as a caching layer

WHITEPAPER 8

...

USER REQUESTS

RDBMS

CACHE MISSES
AND WRITE
REQUESTS

READ-WRITE
REQUESTS

Active Active Active

Replica Replica Replica

COUCHBASE SERVER CLUSTER

Replication

APPLICATION TIER

WHITEPAPER 9

Caching and document performance benchmarking
Couchbase supports typical caching use cases, and also supports more challenging
document database scenarios as well; in both of these scenarios, it outperforms
the competition.

Benchmark analysis has been performed by third-party consulting company Altoros.
They ran various benchmarks against Couchbase and other NoSQL products
(MongoDB and Dynamo) that are generally not used as caching solutions. Couchbase
outperformed these products for best-in-class cache as well as highest performing
document database.

Results shown in Figure 4 demonstrate how strongly Couchbase competes with
other NoSQL vendors in multiple clustering scenarios. One of the use cases
tested was for caching scenarios in particular, with a common high-volume,
key-value workload.

In addition to caching, there are other workloads in the benchmark that serve as
examples of how Couchbase solves other common scenarios such as serving as a
database for an enterprise source of truth or system of record solution.

NODES X RECORDS

WORKLOAD A: 50% READ & 50% UPDATE

TH
RO

U
G

H
PU

T
(O

PS
/S

EC
)

LA
TEN

CY (M
S)

4-NODES X
50M RECORDS

10-NODES X
125M RECORDS

20-NODES X
250M RECORDS

Couchbase

MongoDB

DataStax

400K

300K

200K

100K

0

20

15

10

5

0

Couchbase

MongoDB

DataStax

Figure 4: Altoros benchmark comparing Couchbase, MongoDB, and DynamoDB performance
with a cached key-value lookup and active read/write workload

WHITEPAPER 10

SYSTEM OF RECORD
Operating as a system of record for enterprise data is another distinct role that
Couchbase can serve. In this case, Couchbase operates as both a cache and the
authoritative primary database for applications, providing the durability and stability
that is needed for any primary database application. This is the domain of traditional
relational databases but has become increasingly popular for NoSQL databases to
address, especially on cloud and web platforms.

There is a natural evolution from caching for a database application to aggregating
from other database sources as a system of record and, then, ultimately to moving
source databases over into Couchbase. In all cases, key Couchbase features help
users easily make those transitions while minimizing risk and unlocking value.

Key features such as SQL queries, ACID transactions, relational-structure mirroring,
full-text searches, and real-time SQL++ analytics across a range of internal sources all
factor into building more than just a caching system.

To learn more about how well these types of queries perform on Couchbase, versus
other NoSQL products, see the charts, queries, and testing approaches used in
benchmark reports at couchbase.com/benchmarks.

WHY COMPANIES CHOOSE COUCHBASE

Couchbase is a great fit for many caching scenarios. Many leading companies have
deployed Couchbase Server for mission-critical applications, including many of the
world’s leading enterprises:

• LinkedIn – With over 300 million members, LinkedIn uses Couchbase to cache
over 8 million real-time metrics (over 12TB of data). Over 16 million entries are
loaded into Couchbase every 5 minutes.

• Marriott – Supporting 6,700 global hotel properties, Marriott moved its
reservations system from a relational database to Couchbase. The result: reduced
costs while maintaining 30 million documents and 4,000 transactions per second.

• Amadeus – Amadeus, the leading provider of travel software and technology
solutions for the global travel industry, moved to Couchbase after running
Memcached on top of MySQL to maintain high performance. The company now
processes 7 million requests per sec. at <2.5 ms response times.

• eBay – The world’s largest online auction marketplace uses Couchbase to cache
over 100 million authentication tokens per day to ensure session validity. eBay
achieves over 300,000 writes per second with Couchbase.

https://www.couchbase.com/benchmarks
https://www.couchbase.com/customers/

WHITEPAPER 11

So why have these enterprises chosen Couchbase over the alternatives?

Many caching solutions are simple key-value stores with in-memory capabilities and
some ability to scale out. Couchbase is instead built from the ground up to deliver
elastic performance at scale—the very foundation of a superior caching tier.

In addition, Couchbase builds on this performance with a complete document
database. High availability, powerful SQL-based query, native mobile integration,
ad hoc analytics, and text search combine to empower enterprises beyond
simple caching.

Combined technical advantage
When you combine all the architectural advantages of Couchbase, you have a
comprehensive, high-performance NoSQL database platform to build future use
cases with. While caching is a great use case to get started, once your data is in
Couchbase, there is so much more that is possible.

Other features include SQL querying using the Couchbase NoSQL query language
(SQL++)—effectively letting you query JSON data without having to enforce a schema
or transform your data to behave a certain way just to get answers to queries.

Advanced real-time analytic queries are also possible—as well as full-text searches.
Many developer-centric features exist in Couchbase, including server-side event
processing, operation tracing, ACID transactions, scope/collection organization, and
automatic application failover between clusters.

These are all features that the most demanding teams require. The remainder of
this paper explores these concepts further and contrasts them with other solutions
within the overall context of caching solutions.

COUCHBASE ALTERNATIVES

Memcached and Redis are two examples of solutions that are part of the broader
landscape including both key-value databases and caching solutions. Many other
caching-related products exist, including GemFire, Hazelcast, and Oracle Coherence.
They attempt to solve similar problems, but do not necessarily aim to be a
comprehensive database solution to service caching and other use cases. This paper
will focus on Memcached and Redis, however, the architectural considerations apply

to all NoSQL databases and caching solutions.

REDIS
For businesses using MongoDB, Redis is often recommended as a caching add-on
to solve caching-related performance challenges. Redis is a popular data structure
server. It runs in-memory and has some snapshot persistence, but is not designed to
be a highly persistent database and has limitations around its partitioning model and
workload isolation.

WHITEPAPER 12

MEMCACHED
At the other end of the spectrum, Memcached is a free, open source product that’s
used in thousands of web, mobile, and IoT applications around the world. It’s
simple to install and deploy, and it delivers reliable high performance. However,
Memcached has no enterprise support available, nor does it include a management
console for monitoring. Many companies that deploy Memcached find they want
additional capabilities not included in Memcached, such as automatic failover to
avoid downtime and automatic rebalance to avoid cold caches.

Couchbase has some shared lineage with Memcached and addresses many of its
limitations while also serving as a complete document database solution.

Limitations of Redis
Redis is a key-value data structure server that is popular for in-memory caching
solutions. Companies who employ Redis typically use it on top of other products
such as MongoDB or MySQL to improve performance. It solves other use cases
but is not generally recognized as a document database. Common concerns with
Redis include:

• Complexity – Redis data can be sharded across several nodes, but scripts and
command line utilities have to be run to redistribute data when adding/removing
nodes. It also runs in a primary/secondary (historically known as master-slave
architecture), where the secondaries are read-only. Couchbase uses a “masterless”
approach. Couchbase tasks such as rebalance, adding and failing over nodes, and
more can all be done automatically.

• Lacks built-in features – As Redis is optimized for key-value lookups, the concept
of querying is different than most database users expect. Ad hoc query and
indexing is not possible with the core product if applications need a change to the
data model, then rehashing of data may be required. Couchbase provides an array
of built-in query and indexing services and allows them to run on different nodes –
providing powerful workload isolation.

• Persistence – While Redis has the ability to persist data, it is still primarily an
in-memory focused layer. The persistence capabilities are designed to back up
data and speed up the “cold” restart process, but this impacts performance as it
saves its snapshots to disk. It is not designed for real-time storage and swapping
of disk or in-memory datasets. Couchbase is a complete database solution, able to
efficiently load and persist data from/to disk as expected from a database.

• Memory limitations – Redis datasets must fit into memory. This makes it very
challenging for larger datasets as they must scale up the machine or scale out the
cluster of Redis nodes to shard the data across nodes. Since Redis requires all data
to be in memory, Redis does not efficiently support rotating through a hot working
set as requests shift over the course of a day. This requires more hardware and
increased licensing costs when data volumes start to exceed memory. In contrast,
Couchbase can load data that is larger than memory. Memory quotas can be set
to determine how much of the dataset is kept in RAM, with most used data being
read as needed into the cache for quick access.

Couchbase
Ephemeral Mode
Couchbase automatically
persists to disk, enabling
larger-than-memory data.
However, Couchbase also
has a memory-only
Ephemeral mode, for
situations where you do
not ever want to invoke the
overhead of disk access.

Couchbase
Memcached support
Memcached still appears
as an option in Couchbase,
for purposes of backwards
compatibility. However,
it is deprecated and not
recommended for any new
development.

WHITEPAPER 13

Limitations of Memcached
Memcached is a simple, open source cache used by many companies, including
YouTube, Reddit, Craigslist, Facebook, Twitter, Tumblr, and Wikipedia. It’s an in-
memory, key-value store for small chunks of arbitrary data (strings, objects) from
results of database calls, API calls, or page rendering.

Key advantages of Memcached include:

• High performance – Memcached was engineered as a low latency, high
throughput, scalable cache. It is capable of delivering the throughput required by
very large, internet-scale applications.

• Simplicity – Intentionally designed as a pure, bare-bones cache, Memcached is
very simple to install and deploy.

• Low initial cost – Licensed under the Revised BSD license, Memcached is free
open source software.

LACK OF ENTERPRISE SUPPORT, BUILT-IN MANAGEMENT,
AND ADVANCED FEATURES
If you encounter an issue with Memcached, you need to rely on your own resources
or the Memcached community. There is no built-in management console, so users
need to build their own tools or find separate tooling to monitor its performance.

Memcached does not include advanced features that many enterprises require, such
as automatic failover, load rebalancing to add capacity without downtime, and cross
data center replication.

Couchbase builds on and extends the strengths of Memcached—including
high performance and simplicity—to deliver a more powerful replacement for
Memcached, and a less complex, and more powerful alternative to Redis.

BEYOND CACHING WITH A COMPLETE NoSQL SOLUTION

Modern applications must run in distributed environments and support millions of
users globally with submillisecond response times. Applications employ multiple
technologies to meet these requirements in their data layer. Technology choices are
influenced by maturity, performance, flexibility needs, and storage requirements.
It’s not uncommon to have various systems of record (the authoritative data
source), wrapped in layers of caches (temporary data storage for high performance).
Databases serving as sources of truth, aggregating data from various microservices
for a single view, often require their own caches as well.

With its many integrated features, including a built-in managed cache, disk
persistence, high availability, geographic replication, structured query language,
real-time analytics, full-text search, eventing, and mobile synchronization, Couchbase
consolidates multiple layers into a single platform that otherwise would require
separate solutions to work together.

WHITEPAPER 14

How and where you deploy Couchbase is entirely up to you. Some use Couchbase
just as a cache or just as a system of record. Others start with Couchbase as a
cache and eventually evolve it to become a source of truth and system of record.
Regardless of your strategy, Couchbase gives you the flexibility to choose any starting
point and easily evolve over time.

Couchbase is able to provide the performance of a caching layer, the flexibility of
a source of truth, and the reliability of a system of record. This reduces the need
to manage data models and consistency between multiple systems, learn different
languages and APIs, and manage independent technologies and the integrations
between them.

Many leading enterprises have extended their Couchbase deployment to be the
primary data store, across a growing number of solutions including:

• Customer 360

• Catalog and inventory management

• Field service (mobile and edge)

• IoT data management

• Content management

• Mobile data management

• Operational dashboarding

• Product catalog and pricing

• Session store

• Shopping cart

• User profile store

Once you have implemented Couchbase as a cache—and start to experience lower
costs, higher performance, improved manageability, and easy scalability—you can
start to consider how to leverage the other benefits of the database, including
SQL++, full-text search, real-time analytics, server-side eventing, and more.

Modern customer experiences need a flexible database platform that can
power applications spanning from cloud to edge and everything in between.
Couchbase’s mission is to simplify how developers and architects develop,
deploy and consume modern applications wherever they are. We have
reimagined the database with our fast, flexible and affordable cloud database
platform Capella, allowing organizations to quickly build applications that
deliver premium experiences to their customers—all with best-in-class price
performance. More than 30% of the Fortune 100 trust Couchbase to power
their modern applications.

For more information, visit www.couchbase.com and follow us on Twitter.

© 2023 Couchbase. All rights reserved.

https://www.couchbase.com

	Executive Summary
	importance of a cache in enterprise architectures
	Common use cases

	key requirements
	Distributed caching with Couchbase Server
	Architectural advantages
	Caching and document performance benchmarking

	Why companies choose couchbase
	Combined technical advantage

	couchbase alternatives
	Limitations of Redis
	Limitations of Memcached

	beyond caching with a complete no-sql solution

