
WHITEPAPER

How to Choose
a Database for

Your Mobile Apps

Contents
HOW TO CHOOSE A DATABASE FOR YOUR MOBILE APPS	 3

Evaluating your mobile database – a checklist	 3

SUPPORT FOR THE RIGHT PLATFORMS	 4

SECURE AT REST AND IN MOTION	 4

FLEXIBLE DATA MODELS	 4

SYNC WITH THE RIGHT PARTITIONS	 5

PESKY CONFLICTS	 5

SYNC AT THE RIGHT TIMES	 6

FLEXIBLE DEPLOYMENT	 6

LOCAL DATA STORAGE CAPABILITIES	 7

VECTOR SEARCH FOR AI FEATURES	 7

SHOULD YOU BUILD OR SHOULD YOU BUY?	 7

HOW THE MAJOR PLAYERS STACK UP	 8

WHY COUCHBASE MOBILE?	 8

WHITEPAPER 3

HOW TO CHOOSE A DATABASE FOR YOUR MOBILE APPS

Evaluating your mobile database – a checklist
Successful mobile apps rely heavily on their database provider.

How does your mobile database stack up when put to the test?

•	 Does it have support for the right platforms?

•	 Can you control your database sync?

•	 What sort of querying options does your local database support?

•	 Does it support vector search for semantic search and GenAI features?

•	 Can you easily integrate with LLM or ML models?

•	 Is data secure at rest and in motion?

•	 Do you deploy on-prem or in the cloud?

•	 Does the sync technology support multiple topologies?

•	 Do you worry about adapting to changing data schemas?

•	 How does your database handle pesky conflicts?

•	 Do you need to support multi-tenant apps?

•	 Should you build or should you buy?

The choice of database plays a key role in building successful mobile apps. Data
synchronization, local data storage and querying capabilities, vector search for AI
features, and end-to-end security are key elements of a data platform.

Today’s consumers are highly reliant on their mobile applications, with large portions
of modern business relying on the ability to interact with their users via mobile. If
apps don’t work, users won’t use them – it’s that simple.

To avoid reliance on a network, providers of databases and cloud services have
started to add synchronization and offline capabilities to their mobile offerings. If
apps require a connection to work, then the end-user experience will be sluggish
and unpredictable.

Solutions like Couchbase Mobile, MongoDB™ Atlas Device Sync (now deprecated
to end-of-life), Amazon’s AWS AppSync, and Google’s Cloud Firestore offer the
all-important sync that enables apps to work both online and offline. Other database
providers such as SQLite, Android Room, and Core Data support local storage but do
not provide sync support.

With so many offerings available, how does a mobile developer select the right
technology? The following key criteria are essential when evaluating mobile
solutions: multi-platform support, local data storage capabilities, sync capabilities
with conflict resolution, ease of development, security, vector search for AI features,
agile data modeling, flexible deployment, and topology options.

THE CHOICE OF DATABASE

PLAYS A KEY ROLE IN BUILDING

SUCCESSFUL MOBILE APPS.

WHITEPAPER 4

SUPPORT FOR THE RIGHT PLATFORMS

What client platforms are supported? Do you need to go beyond iOS and Android?
Are you looking to support platforms that aren’t traditionally considered mobile,
such as embedded systems and IoT devices? Are you looking to support Windows
and Mac desktops and laptops as well? What about cross-platform technology?

Many of today’s applications start on mobile, then add a native desktop version.

It’s important to evaluate database and cloud options based on the platform support
that you need not only today but also in the future.

SECURE AT REST AND IN MOTION

When you’re using synchronized and decentralized storage, it’s important to access,
transmit, and store data securely. To cover this completely, you need to address
authentication, data at rest, data in motion, and read/write access control.

Authentication should be flexible and allow for the use of common public and
custom authentication providers. Support for anonymous access is also important
for many apps. For data at rest on the server and client, you’ll want support for both
file system encryption and data-level encryption. For data in motion, communication
should be over a secure channel like SSL or TLS. For data read/write access, the
database should include granular user and role-based access control (RBAC).

FLEXIBLE DATA MODELS

Data modeling flexibility will dictate whether you can articulate the model
requirements for your apps in an efficient and appropriate way. Today’s mobile apps
evolve at a very fast pace, and the flexibility of your model will dictate whether you
can easily adapt as your requirements change in the future.

A new release of a mobile app with an updated data schema will require expensive
database schema migrations to be performed on app launch, adding to your app
startup costs. As an app developer, you don’t have control over when a new version
of your app gets adopted. As a result, users might be migrating from a very old
version of schema to the latest version, exacerbating data migration issues.

Relational databases are still a good choice if an app requires strong data
consistency or its data is highly relational. But NoSQL databases offer much
greater flexibility.

MANY OF TODAY’S

APPLICATIONS

START ON MOBILE,

THEN ADD A

NATIVE DESKTOP

VERSION.

WHITEPAPER 5

SYNC WITH THE RIGHT PARTITIONS

Configurable sync topology support is needed to allow you to meet your partition
requirements. In other words, you need the ability to configure the system to allow
certain parts to operate offline. A star network is the most common topology, where
each device is connected to a central hub using a point-to-point connection that
allows the devices to operate offline. Other common topologies such as tree and
mesh allow different parts of the system (in addition to the devices) to
operate offline.

You may also want support for cloudless topologies that allow devices to
communicate peer to peer and directly sync data among themselves. Peer-to-peer
synchronization is a powerful addition or alternative to client/server synchronization.
It allows apps to connect and exchange data directly without going through a central
server in the cloud. As a result, apps can continue to work and share data regardless
of internet availability.

A point-of-sale (POS) system is a good example of a tree topology. POS systems
require that a brick-and-mortar store continue to operate if it becomes disconnected
from the rest of the system. In this configuration, POS devices would sync with a
store-level database, which would then sync with a global system. So, stores can
continue to operate and sync data with their POS devices regardless of connectivity
to the global system.

PESKY CONFLICTS

For mobile platforms, or any other platform that utilizes decentralized data writes,
the same data can be simultaneously modified on multiple devices, creating a
conflict. The system needs to support a mechanism for resolving those conflicts.
Conflict handling will differ for each system. Couchbase Mobile, for example, uses
revision trees with a default resolution rule of “most active branch wins.” This is the
same approach taken by revision control systems such as Git and much different
than clock-based systems that take a “most recent change wins” approach. Clock-
based resolution systems are problematic due to the issues around clock differences
across devices.

WHITEPAPER 6

SYNC AT THE RIGHT TIMES

In addition to being able to resolve conflicts, it’s important to have the ability to
control how the system syncs, which includes replication strategy, replication events,
conditional replication, and replication filtering. For replication strategy, look for
support for streaming, polling, one time, continuous, and push. The granularity of
sync has a direct impact on network bandwidth usage, so having a solution that is
smart about identifying what subset of data has changed and only syncing the deltas
is an important consideration in mobile deployments where data plans come at a
premium and network bandwidth is limited.

You should also have the ability to use a combination of these strategies. For
replication events, you may need to know the overall replication status as well as the
replication status of individual documents. For conditional replication, you may need
to replicate data only under certain conditions, such as when the device is on Wi-Fi
or when it has sufficient battery power. For replication filtering, you should have the
ability to replicate some data but not other data. The filtering could be fine grained
and could be based on the content of the data itself.

FLEXIBLE DEPLOYMENT

How you deploy the database is a very important decision and one that should not
be constrained by requirements to use a particular hosting provider or platform.
Avoid vendor lock-in so that your ability to grow or migrate projects in the future is
not limited by functionality or cost issues. The ultimate solution should allow you to
choose between using fully managed and hosted backend data and sync services,
or hosting your backend database and sync yourself on any public or private cloud,
as well as on premises in your own data center. Ideally, you would not need any
additional third-party hosted services on additional software to build your complete
mobile stack.

If your app needs to support multiple tenants – each with its own users – ensure that
your database can isolate and secure data for each tenant at the appropriate levels
of granularity, and without the need to create separate database instances.

Another way to ensure flexibility is to use modern containerization approaches that
make it easy to manage deployments as needs change or grow. Using Kubernetes
to help orchestrate your containerized environments makes it much easier for your
operations team to keep things manageable.

AVOID VENDOR LOCK-IN

SO THAT YOUR ABILITY

TO GROW OR MIGRATE

PROJECTS IN THE FUTURE

IS NOT LIMITED BY

FUNCTIONALITY OR

COST ISSUES.

WHITEPAPER 7

LOCAL DATA STORAGE CAPABILITIES

When looking for offline storage capabilities, you’ll need to determine if your app is
expected to be usable in a completely standalone mode with extended periods of
network disconnectivity, or if you’re looking for a temporary cache to handle short
network disruptions. An extensive database query API with SQL and full-text search
support and the ability to be asynchronously notified of database changes will
allow mobile apps to support responsive and highly reactive workflows locally. An
intuitive, easy-to-use API will reduce ramp-up costs and reduce development and
integration efforts.

VECTOR SEARCH FOR AI FEATURES

The search feature in your app should always return personalized responses in
order to make an impact. But searching only for specific words and phrases is not
enough to produce accurate results in context. To make a personal connection you
need semantic search for matches that are meaningful to the user. Vector search
finds related information based on the core meaning of the input, making it the best
option for providing relevant information that connects with users.

And for GenAI functionality such as conversational chatbots, recommenders or
AI-assistants, vector search enables easy integration with LLMs (large language
models) through techniques such as Retrieval Augmented Generation (RAG) where
current local vector data is passed along with prompts to provide better precision
and context for LLM responses. To enable these kinds of AI features, make sure
your database supports vector search, including within offline storage to meet strict
privacy or regulatory requirements.

SHOULD YOU BUILD OR SHOULD YOU BUY?

When looking to add sync to your apps, you’ll need to determine if you should build
a solution or get it from a provider. Building sync correctly is notoriously difficult and
expensive, as it must deal with all of the complexities of distributed computing. For
most apps, you’ll be better off leaving data synchronization to a specialized stack and
focusing on your app features. The key is choosing a solution that is flexible. If you
go down the build path, be ready to expend a significant portion of your time and
resources on building sync and supporting everything listed above.

When choosing a mobile sync and storage provider, taking full measure of the above
criteria will be critical to building secure, flexible, and manageable mobile apps that
always work – with or without an internet connection.

WHITEPAPER 8

HOW THE MAJOR PLAYERS STACK UP

Capability Couchbase
Mobile

MongoDB
Atlas Device

Sync

Google Cloud
Firestore AWS AppSync

SQLite,
Core Data,

Android Room

Offline support

Platform support

Enterprise-level
security —

Flexible data
model —

Flexible topology
support — — —

Peer-to-peer sync — — — —

Delta
synchronization — — — —

Flexible
deployment —

Vector search
on-device

— — — —

WHY COUCHBASE MOBILE?

Couchbase Mobile brings the power and flexibility of a NoSQL database to the edge.
It includes Couchbase Lite, an embedded NoSQL database for mobile and embedded
apps that exposes a powerful SQL++ query API and supports vector search on-device
as well as in the cloud. It also includes a synchronization gateway responsible for
synchronizing data across clients and the cloud in order to enforce access control
policies, authentication, authorization, and data routing. Choose from fully managed
and hosted sync with Capella App Services, or host and manage sync yourself with
Sync Gateway. This powerful combination, especially when paired with Couchbase
Capella™ DBaaS, is what makes Couchbase Mobile the only choice for secure,
resilient, offline-first applications that deliver sub-second responsiveness and
100% uptime.

Learn more at www.couchbase.com/mobile, and sign up for the Capella free trial
at cloud.couchbase.com/sign-up.

https://www.couchbase.com/mobile
https://cloud.couchbase.com/sign-up

Modern customer experiences need a flexible database platform that can
power applications spanning from cloud to edge and everything in between.
Couchbase’s mission is to simplify how developers and architects develop,
deploy and consume modern applications wherever they are. We have
reimagined the database with our fast, flexible and affordable cloud database
platform Capella, allowing organizations to quickly build applications that
deliver premium experiences to their customers – all with best-in-class price
performance. More than 30% of the Fortune 100 trust Couchbase to power
their modern applications. For more information, visit www.couchbase.com
and follow us on X (formerly Twitter) @couchbase.

© 2024 Couchbase. All rights reserved.

https://www.couchbase.com

	How to Choose a Database for Your Mobile Apps
	Evaluating your mobile database—a checklist

	Support for the right platforms
	Secure at rest and in motion
	Flexible data models
	Sync with the right partitions
	Pesky conflicts
	Sync at the right times
	Flexible deployment
	Local data storage capabilities
	Vector search for AI features
	Should you build or should you buy?
	How the major players stack up
	Why Couchbase Mobile?

