

To Couchbase and Kubernetes

Customers and Community

Foreword
We’re excited to present this new book to you, our Couchbase customers,
users, and readers. We started developing Couchbase Autonomous Operator
back in 2017 when we realized how Kubernetes is revolutionizing the way
we run infrastructure and enable a host of new technologies and applications.
We did not want our customers and users to have to build their solution to
run Couchbase Server on Kubernetes, so we designed the “Couchbase
Autonomous Operator.”

After a few beta releases and helpful feedback from early customers and
community users, Couchbase Autonomous Operator 1.0 was released in
August 2018. As of this writing in September 2018, there are already dozens
of customers testing Couchbase Autonomous Operator in production.

A special thanks to our Couchbase and community colleagues.

We hope you enjoy this book. If you have feedback or suggestions for future
topics, please share them on our forums, on Stack Overflow, and of course, send
email to anil@couchbase.com.

Anil Kumar
Couchbase Inc.
3250 Olcott Street
Santa Clara, CA 95054
October 2018

mailto:anil@couchbase.com

Acknowledgments
Writing a book is harder than I thought and more rewarding than I could have
ever imagined. None of this would have been possible without my mentor and
good friend, Keshav Murthy. Thank you for inspiring me to write this book.

This book is dedicated to my Couchbase engineering group, and the other teams
in Couchbase that help define the product, support, and community. Without
their hard work and contribution, this book would not exist.

Mike Wiederhold, Engineering Manager – Cloud

Tommie McAfee, Sr. Software Engineer – Cloud

Simon Murray, Sr. Software Engineer – Cloud

Korrigan Clark, Software Engineer in Test

Arunkumar Senthilnathan, Sr. Software Engineer in Test

Ashwin Govindarajulu, Software Engineer in Test

Sindhura Palakodety, Sr. Technical Support Engineer

Matt Carabine, Sr. Technical Support Engineer

Lynn Straus, Sr. Manager, Programs

Eric Schneider, Sr. Technical Writer

Chris Hillery, Sr. Build/Release Engineer

Kenneth Lareau, Sr. Build/Release Engineer

https://www.linkedin.com/in/keshavamurthy/
https://www.linkedin.com/in/mikewied/
https://www.linkedin.com/in/tommie-mcafee/
https://www.linkedin.com/in/spjmurray/
https://www.linkedin.com/in/korrigan-clark-970295b4/
https://www.linkedin.com/in/arunkumar-senthilnathan-b1916116/
https://www.linkedin.com/in/ashwin-g-4b168133/
https://www.linkedin.com/in/sindhura-palakodety-a6724416/
https://www.linkedin.com/in/mattcarabine/
https://www.linkedin.com/in/lynnstraus/
https://www.linkedin.com/in/ericws/
https://www.linkedin.com/in/chris-hillery-bb23778/
https://www.linkedin.com/in/ken-lareau-693246/

About the Author
Anil Kumar is the Director of Product Management at Couchbase. Anil’s career
spans more than 15+ years building software products across various domains
including enterprise software, mobile services, and voice and video services.
As Director of Product Management at Couchbase, he is a hands-on product
leader responsible for Couchbase Server, Cloud, and Kubernetes product
lines as well as evangelizing the product strategy and vision with customers,
partners, developers, and analysts. Prior to joining Couchbase, Anil spent several
years working at Microsoft in the Entertainment division and Windows and
Windows Live division. Anil holds a master’s degree in computer science from
Toronto (Canada) and a bachelor’s in information technology from Visvesvaraya
Technological University (India).

https://www.linkedin.com/in/anilkumar29/

Table of Contents

1. WHAT IS KUBERNETES? 1

Introduction To Kubernetes – Manage And Scale
Your Entire Application Stack 3

Kubernetes Architecture 3

Master Node 4

Nodes 5

Pods 6

Volumes 6

Getting Started 8

2. WHY RUN COUCHBASE ON KUBERNETES? 9

Introduction – How Kubernetes Conquers
Stateful Cloud-Native Applications 11

Why Run Couchbase On Kubernetes? 11

Adopting a Hybrid Cloud or Multi-Cloud Strategy 11

Moving Toward a Microservices Architecture 14

Managing Hundreds of Globally Distributed

Multi-Cloud Deployments 16

3. KUBERNETES STATEFULSETS AND OPERATOR? 17

Kubernetes StatefulSets 19

Kubernetes Operator 20

StatefulSets versus Operator 21

Limitations of StatefulSets 21

Need for Operator: Stateless Is Easy, Stateful Is Hard 22

4. INTRODUCING COUCHBASE AUTONOMOUS
OPERATOR FOR KUBERNETES 25

Introduction 27

Why It Is Called “Autonomous” 27

How Autonomous Operator Works 27

Couchbase Autonomous Operator Architecture 29

Server Pods 30

Services 30

Volumes 30

Getting Started with Autonomous Operator 31

The Autonomous Operator Configuration 31

Create the Autonomous Operator 34

Prerequisites for Deploying a Couchbase Cluster 34

CouchbaseCluster Configuration 35

Deploying a Couchbase Cluster 53

Couchbase Autonomous Operator 1.0 Highlights 54

Automated Cluster Provisioning 54

On-Demand Scalability 55

Automated Recovery 55

High Availability Across Distributed Infrastructure 56

Persistent Storage 56

Supportability 57

Centralized Configuration Management 57

5. THE FUTURE IS BRIGHT 59

What’s In The Roadmap For Autonomous Operator? 61

WHAT IS KUBERNETES? | 1

1. WHAT IS
KUBERNETES?

2 | COUCHBASE ON KUBERNETES

WHAT IS KUBERNETES? | 3

INTRODUCTION TO KUBERNETES –
MANAGE AND SCALE YOUR ENTIRE
APPLICATION STACK
Kubernetes (originating from the Greek word for “governor,” “helmsman,” or
“captain,” and commonly referred to as “K8s”), is an open source container-
orchestration technology for automating deployment, scaling, and managing
containerized applications. It was developed and open sourced by Google,
inspired by a decade of experience deploying scalable, reliable systems in
containers, and heavily influenced by Google’s Borg system.

Kubernetes open source project is now maintained by the Cloud Native
Computing Foundation (CNCF).

Kubernetes is a technology that is built to serve both the needs of internet-scale
companies and cloud-native developers of all scales, from a cluster running on a
development machine to a datacenter full of sophisticated machines. Kubernetes
provides the software necessary to create and deploy reliable, scalable, distributed
containerized systems successfully across the entire application stack.

Kubernetes focuses on building a robust orchestration system for running
thousands of containers in production. Through automation of processes,
Kubernetes can eliminate many of the laborious manual tasks and infrastructure
complexity that often fall on DevOps teams to help with the deployment, scaling,
and management of containerized applications.

While Kubernetes works mainly with Docker container, it can also work with
any container technology that conforms to the Open Container Initiative (OCI)
standards for container image formats and runtimes. OCI was established in
June 2015 by Docker and other leaders in the container industry.

KUBERNETES ARCHITECTURE
Kubernetes architecture consists of two main components: master node(s) and
nodes (see Figure 1.1 next page).

https://en.wikipedia.org/wiki/Helmsman
https://en.wikipedia.org/wiki/Open-source
https://en.wikipedia.org/wiki/Docker_(software)
https://ai.google/research/pubs/pub43438
https://www.cncf.io/
https://www.cncf.io/
https://www.opencontainers.org/

4 | COUCHBASE ON KUBERNETES

Figure 1.1: Kubernetes architecture

Master Node

The master node provides the Kubernetes main cluster management. Master
components make global decisions about the cluster and detect and respond to
cluster events. Examples of these decisions are scheduling, starting pods, and
ensuring that pods are running. The master usually runs on a single node and
can have multiple replicas.

Here are the main components of the master node (see Figure 1.2 next page):

1. API server – It is the front-end for the Kubernetes control plane, and
nearly all the components on the master and worker nodes accomplish
their respective tasks by making API calls.

2. etcd – etcd is a service whose job is to keep and replicate the current
configuration and run the state of the cluster. It is a lightweight,
distributed key-value store that was initially developed inside the
CoreOS project.

WHAT IS KUBERNETES? | 5

3. Scheduler and controller manager server – These processes schedule
pods onto target worker nodes. They also make sure that the correct
numbers of these pods are running at all times.

API Server

Scheduler

Controller Manager

etcd

Figure 1.2: Kubernetes master node

Nodes

A node is a worker machine in Kubernetes, also referred to as worker nodes.
A node might be running on a virtual machine (VM) or physical machine,
depending on where the cluster gets deployed. Each node is responsible for
maintaining pods (introduced in next section) and providing the Kubernetes
runtime environment. Nodes receive tasks from the master and execute those
tasks. Examples of tasks are creating new pods, updating network routing,
and providing statuses about pods or the node itself.

A node usually runs two critical processes:

1. Kubelet – An agent that runs on each node whose job is to respond
to commands from the master to create, destroy, and monitor the
containers on that host.

6 | COUCHBASE ON KUBERNETES

2. Proxy – This is a simple network proxy that’s used to separate the IP
address of a target container from the name of the service it provides.

Pods

Pods are the smallest deployable units of computing that can be created and
managed in Kubernetes.

Each pod consists of a group of one or more containers, with shared storage,
network, and specification for how to run the containers (see Figure 1.3 below).

Containers within a pod share an IP address and port space and can find each
other via localhost. They also share volumes, so anything written to disk by one
container can be read by another container as long as both containers are in the
same pod.

 Node

Pod 0 Pod 1

Kubelet

Proxy

Container 1

Container 2 Container 2

Container n Container n

Container 1
Pod

Node

Volume

Kubelet
Docker

Containerized App

Node Processes

10

.10
.10.3

10

.10
.10.1

10

.10
.10.2 10

.10
.10.4

Figure 1.3: Kubernetes node and pod overview

Volumes

In general, there are two types of volume in Kubernetes:

WHAT IS KUBERNETES? | 7

1. Ephemeral volume

2. Persistent volume

Ephemeral Volume

Conceptually, an ephemeral volume is a file directory that is accessible to all of
the containers in a pod. The volume source declared in the pod specification
determines how the directory gets created, the storage medium used, and the
directory’s initial contents. A pod specifies what volumes it contains and the
path where containers mount the volume.

Ephemeral volume types have the same lifetimes as their enclosing pods.
These volumes get created when the pod gets created, and they persist through
container restarts. When the pod gets terminated or deleted, its volumes gets
deleted along with it (see Figure 1.4 below).

Figure 1.4: Pod ephemeral volume

Persistent Volume

A persistent volume (PV) is a storage location that has a lifetime independent
of any pod or container. Independence is very useful in the case of persistent

Container 1

Container 2

Container n

 Node

Pod

https://cloud.google.com/kubernetes-engine/docs/concepts/pod#pod_templates

8 | COUCHBASE ON KUBERNETES

storage solutions where the on-disk representation of a database should survive
even if the containers running the database application crash or move to
different machines. If the application moves to a different machine, the volume
should move with it, and data gets preserved. Separating the data storage out as
a persistent volume makes this possible.

PersistentVolume resources can be provisioned dynamically through
PersistentVolumeClaims, or a cluster administrator can explicitly create them
(see Figure 1.5 below).

 Node 1

Kubelet

Proxy

Container 1

Container 2 Container 2

Container 1

 Node 2

Kubelet

Proxy

Container 2 Container 2

Container 1 Container 1

Node 3

Kubelet

Proxy

Container 2 Container 2

Container 1 Container 1

PV01

PVC01 PVC02 PVC03

PV02 PV03 PV04 PV05 PV06

Persistent Volumes

Pod 0 Pod 1 Pod 0 Pod 1 Pod 0 Pod 1

Figure 1.5: Cluster of PersistentVolume attached to pods using PersistentVolumeClaim

GETTING STARTED
As described in Kubernetes documentation, Kubernetes can run on various
platforms: from your laptop to VMs on a cloud provider to a rack of bare metal
servers. The effort required to set up a cluster varies from running a single
command to crafting your customized cluster.

The best way to get started on your local machine is to use Minikube (single-
node Kubernetes cluster) or Minishift (single-node OpenShift cluster), which
make great development tools.

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/setup/minikube/
https://docs.openshift.org/latest/minishift/getting-started/installing.html

WHY RUN COUCHBASE ON KUBERNETES? | 9

2. WHY RUN
COUCHBASE ON
KUBERNETES?

10 | COUCHBASE ON KUBERNETES

WHY RUN COUCHBASE ON KUBERNETES? | 11

INTRODUCTION – HOW KUBERNETES
CONQUERS STATEFUL CLOUD-NATIVE
APPLICATIONS
There was a widespread myth that Kubernetes was not ready for stateful
applications, and had a surprisingly short life. This myth was driven by a
combination of the initial focus on stateless applications within the Kubernetes
community and the relatively late addition of support for StatefulSets and
persistent storage to the platform.

Further, even after initial support for persistent storage, the kinds of higher-
level platform primitives that brought ease of use and flexibility to stateless
applications were missing for stateful workloads. However, not only has this
shortcoming been addressed, but Kubernetes is fast becoming the preferred
platform for stateful cloud-native applications.

WHY RUN COUCHBASE ON KUBERNETES?
The proven flexibility and potential Kubernetes has delivered with regard
to automating deployment, scalability, and management of containerized
applications also applies to containerized, stateful distributed databases
such as Couchbase Server.

The main reasons companies consider running Couchbase Server on
Kubernetes include:

1. Adopting a hybrid cloud or multi-cloud strategy

2. Moving toward a microservices architecture

3. Managing hundreds of globally distributed multi-cloud deployments

Adopting a Hybrid Cloud or Multi-Cloud Strategy

Many companies are embracing a “cloud-first” strategy, and according to
451 Research , “69% of enterprises will have multi-cloud/hybrid IT
environments by 2019.”

https://451research.com/images/Marketing/press_releases/Pre_Re-Invent_2018_press_release_final_11_22.pdf

12 | COUCHBASE ON KUBERNETES

As enterprises move their business-critical data to the cloud, they are embracing
hybrid cloud architecture, which supports an organization’s data in both public
and private cloud infrastructures.

A hybrid cloud approach provides flexibility regarding the scalability and geo-
distribution of data. Increasingly, it is becoming a standard requirement for
databases to:

1. Be cloud-agnostics or infrastructure-agnostic and be able to run
anywhere – bare metal, VMs, private or public cloud.

2. Provide data migration/replication capability, i.e., freedom to move
data to any cloud with fast and efficient data replication technology.

Why does a database need to be cloud-agnostic or
infrastructure-agnostic?

With the increased adoption of a hybrid cloud/multi-cloud approach,
enterprises are facing a new challenge: cloud vendor lock-in. Enterprises
don’t want to get “locked-in” to a particular cloud vendor, as their business
goals dictate the use of the most price-competitive cloud service, while taking
advantage of the speed, capacity, and features offered by a particular cloud
provider in a specified geographic region.

Cloud vendor lock-in blocks enterprises from switching between cloud
providers since there is little to no industry standardization between these
clouds. These challenges are top of mind for enterprises as they move into a
multi-cloud environment.

Hence Kubernetes is a “game changer,” as it solves the biggest problem facing
companies that want to deploy in a cloud-agnostic way.

“A database engineer can now take Couchbase Docker containers, describe it
with declarative YAML with all the configuration – environment variables, ports,
availability zones, storage systems, and so forth – and then run it on any public
or private cloud with zero lock-ins.”

https://en.wikipedia.org/wiki/Cloud_computing#Hybrid_cloud

WHY RUN COUCHBASE ON KUBERNETES? | 13

Cloud vendor lock-in is no longer a concern because CNCF has created a
Certified Kubernetes Conformance Program. Most of the world’s leading vendors
and cloud computing providers have Certified Kubernetes offerings.

Certified Kubernetes Conformance Program standards include:

1. Guaranteed portability and interoperability – users want their
workloads to run everywhere.

2. Timely updates – to remain certified, vendors need to provide the latest
version of Kubernetes yearly or more frequently, so you can be sure that
you’ll always have access to the latest features the community has been
working hard to deliver.

3. Confirmability – any end user can confirm that their distribution
or platform remains conformant by running the same open source
conformance application (Sonobuoy) that was used to certify.

With Kubernetes, enterprises can run a Couchbase cluster on any cloud
including Red Hat OpenShift, Google Kubernetes Engine GKE, Amazon Elastic
Container Service for Kubernetes EKS, Microsoft’s Azure AKS, and Pivotal
CloudFoundry Container Runtime. No matter where you deploy the cluster, it
runs more or less the same with no glitches or performance issues.

Why does a database need to provide data migration/
replication technology?

Although Kubernetes provides an ability to quickly deploy the same
configuration across your private and public multi-clouds, migration of data
or data synchronization is still the critical capability that a database needs to
provide in order to be genuinely multi-cloud/hybrid cloud.

Couchbase delivers an enterprise-grade solution, cross datacenter replication
(XDCR), for data migration or synchronization. Cross datacenter replication is
Couchbase’s flagship technology for high-performance, (memory-to-memory)
network-speed data replication.

https://www.cncf.io/certification/software-conformance/
https://www.cncf.io/certification/software-conformance/#logos
https://www.openshift.com/
https://cloud.google.com/kubernetes-engine/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://docs.microsoft.com/en-us/azure/aks/
https://www.cloudfoundry.org/container-runtime/
https://www.cloudfoundry.org/container-runtime/

14 | COUCHBASE ON KUBERNETES

XDCR makes it very easy to lift and shift from one cloud to another without
requiring any third-party technologies for migrating data. Also, XDCR makes it
much easier to distribute data across multi-cloud deployments.

Moving Toward a Microservices Architecture

Microservices have become ubiquitous among enterprise development teams.
According to Dimension Research, a Global Microservices Trends survey
shows the use of microservices moving at a rapid pace. The vast majority of
development teams at large companies (92%) reported an increase in their
number of microservices.

The main difference between microservices architecture and monolithic
architecture is instead of building an application that includes all of the
components in one deployable executable file (monolithic), microservices
architecture is a suite of independently deployed and narrowly focused services.
By isolating out the monolithic application into smaller parts (services),
developers can then enhance, patch, and scale those services as needed without
affecting the other ones.

Typically, enterprises moving toward a microservices architecture are adopting
containerized platforms using containers and Kubernetes technologies.
While organizations take on the journey to microservices architecture by
containerization, they often isolate stateless applications running in containers
from their stateful application, i.e., database on on-premises or VMs, building
new silos in their infrastructure (see Figure 2.1 below).

Hence, enterprises who have adopted microservices architecture for their
applications find it very difficult to manage and scale database clusters in a siloed
system, making it longer to develop and harder to support their applications.

https://dzone.com/storage/assets/9982035-global-microservices-trends-april-2018.pdf

WHY RUN COUCHBASE ON KUBERNETES? | 15

Centralized Database Centralized Database

Microservices ArchitectureMonolithic Architecture
S

in
g

le
 D

e
p

lo
y
a
b

le
 E

n
ti

ty
S

in
g

le
 D

e
p

lo
y
a
b

le
 E

n
tity

User Interface
User Interface

Microservice Microservice

Microservice Microservice Microservice

Business Layer

Data Interface

Figure 2.1: Comparison between application development approaches

To solve this database silo challenge and reduce your DevOps workload, run
Couchbase as an autonomous, stateful application next to your microservices
applications on the same Kubernetes platform.

An important rule for microservices architecture is that each microservice owns
its domain data and logic. Just as a full application owns its logic and data, so
must each microservice.

There are other advantages to running the data service closer to the
microservice such as high performance and low latency. Optionally, for the
system of record, data from all the data services can be replicated back to a
centralized database (see Figure 2.2 on next page).

16 | COUCHBASE ON KUBERNETES

Centralized Database Centralized Database

Microservices ArchitectureMonolithic Architecture

Data Service

S
in

g
le

 D
e

p
lo

y
a
b

le
 E

n
ti

ty
S

in
g

le
 D

e
p

lo
y
a
b

le
 E

n
tity

User Interface
User Interface

Microservice Microservice

Microservice MicroserviceMicroservice

Business Layer

Data Interface

Figure 2.2: Data sovereignty comparison – monolithic database versus microservices

Managing Hundreds of Globally Distributed

Multi-Cloud Deployments

Most companies deploy hundreds of database clusters for a variety of reasons,
for example, development, test, pre-production, and production setup, which
makes sense. Moreover, clusters may have to be deployed in different regions or
availability zones for data availability or geo-locality reasons. Also, clusters may
need to be deployed across public and private clouds for a hybrid strategy.

As a result, there is a very high operational cost associated with deploying and
managing hundreds of clusters across multiple setups, regions, and private and
public clouds.

Managing hundreds of clusters is where Kubernetes is once again a “game
changer” as it provides software-as-a-service automation capabilities that
automate many of the manual processes involved in deploying, scaling, and
managing containerized applications.

Deploying and running Couchbase as a containerized stateful application on
Kubernetes can reduce up to 90-95% of the operational complexity.

KUBERNETES STATEFULSETS AND OPERATOR? | 17

3. KUBERNETES
STATEFULSETS

AND OPERATOR?

18 | COUCHBASE ON KUBERNETES

KUBERNETES STATEFULSETS AND OPERATOR? | 19

KUBERNETES STATEFULSETS
As mentioned in Kubernetes documentation, StatefulSets represent a new set
of Kubernetes API objects used to manage stateful applications.

StatefulSets are valuable for applications that require one or more of
the following:

• Stable, unique network identifiers

• Stable, persistent storage

• Ordered, graceful deployment and scaling

• Ordered, graceful deletion and termination

• Ordered, automated rolling updates

In the above list, stable is synonymous with persistence across pod
(re)scheduling. If an application doesn’t require any stable identifiers or
ordered deployment, deletion, or scaling you should deploy your application
with a controller that provides a set of stateless replicas. Controllers such as
deployment or replicaSet may be better suited to your stateless needs.

The state information and other resilient data for any given StatefulSet pod
get maintained in persistent volumes associated with the StatefulSet
(see Figure 3.1 next page).

The example below demonstrates the components of a StatefulSet:

• A “headless” service is used to control the network domain

• The StatefulSets, pods with unique, persistent identities, and stable
hostnames that Kubernetes Engine maintains regardless of where they
are scheduled

• The PersistentVolumeClaim PVC provides stable storage using
PersistentVolumes provisioned by a PersistentVolume provisioner

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

20 | COUCHBASE ON KUBERNETES

Figure 3.1: Kubernetes StatefulSets with PersistentVolumeClaim and persistent volume

Here is the comparison of a StatefulSet pod versus a stateless pod.

StatefulSet Pod Stateless Pod

File Server – file server needs
to maintain persistent storage
across restarts

Ephemeral data, nothing is persisted to
storage or disk

Logs – to collect support information and
log analysis Does not care about previous state

Figure 3.1: StatefulSets versus stateless

KUBERNETES OPERATOR
A Kubernetes Operator is an application-specific controller that extends the
Kubernetes API to create, configure, and manage instances of complex stateful
applications on behalf of a Kubernetes user. It builds upon the necessary
Kubernetes resource and controller concepts but includes the domain or
application-specific knowledge to automate everyday tasks.

https://kubernetes.io/docs/concepts/overview/components/#kube-controller-manager

KUBERNETES STATEFULSETS AND OPERATOR? | 21

Operators were first introduced by CoreOS as a class of software that operates
other software, putting operational knowledge collected by humans into the
software. Read more in the original blog post, Introducing Operators: Putting
Operational Knowledge into Software.

Operators build upon two central Kubernetes concepts: resources and controllers.
As an example, the built-in ReplicaSet resource lets users set a desired number of
pods to run, and controllers inside Kubernetes ensure the desired state set in the
ReplicaSet resource remains true by creating or removing running pods. There
are many fundamental controllers and resources in Kubernetes that work in this
manner, including Services, Deployments, and DaemonSets.

Here’s a list of excellent operators – https://github.com/operator-framework/
awesome-operators

STATEFULSETS VERSUS OPERATOR

Limitations of StatefulSets

Limitation #1

StatefulSets are great for specific use cases where each pod in the StatefulSet
doesn’t need to interact with other pods in the same StatefulSet. For example,
file servers need to maintain the same persistent storage across restarts and
can quickly be deployed and restarted without the execution of custom logic.
As long as other applications in the cluster discover it, then it can quickly be
run with a StatefulSet.

https://coreos.com/blog/introducing-operators.html
https://coreos.com/blog/introducing-operators.html
http://kubernetes.io/docs/user-guide/replicasets/
http://kubernetes.io/docs/user-guide/services/
http://kubernetes.io/docs/user-guide/deployments/
http://kubernetes.io/docs/admin/daemons/
https://github.com/operator-framework/awesome-operators
https://github.com/operator-framework/awesome-operators

22 | COUCHBASE ON KUBERNETES

Whereas for running complex distributed databases, such as Couchbase
that requires different custom logic to properly deploy, scale, and maintain a
cluster, StatefulSets focus on creating and managing pods, not on managing the
complicated software running on them.

Limitation #2

When a pod gets terminated or deleted with a StatefulSet, Kubernetes tries to
recreate the pod on the same node it was running on previously. Kubernetes
doesn’t want a pod to be immediately restarted on another node in order to
reduce a possible split-brain scenario, and multiple instances of the same pod
can lead to data corruption. Recreating the pod on the same node is the default
nature of a StatefulSet because Kubernetes assumes that the applications
running in a StatefulSet require a stable network identity and stable storage.

If a node/host becomes unreachable because it’s down for scheduled
maintenance or becomes partitioned from the network, Kubernetes then
schedules a pod to be created on another node, and the secondary disk gets
moved to that node. Unfortunately, the timeframe for new pod creation can
result in data unavailability for the application when a pod doesn’t get restarted
on another node.

Need for Operator: Stateless Is Easy, Stateful Is Hard

With Kubernetes, it is relatively easy to manage and scale web apps, mobile
backends, and API services right out of the box. Why? Because these applications
are generally stateless, so the basic Kubernetes APIs, like Deployments, can scale
and recover from failures without additional knowledge.

A more significant challenge is managing stateful applications, like databases
such as Couchbase Server. These systems require application domain knowledge
to correctly scale, upgrade, and reconfigure while protecting against data loss or
unavailability. We want this application-specific operational knowledge encoded
into software that leverages the powerful Kubernetes abstractions to run and
manage the application correctly.

https://en.wikipedia.org/wiki/Split-brain_(computing)

KUBERNETES STATEFULSETS AND OPERATOR? | 23

An Operator is software that encodes this domain knowledge and extends the
Kubernetes API through the third-party resources mechanism, enabling users to
create, configure, and manage applications. Like Kubernetes’s built-in resources,
an Operator doesn’t just manage a single instance of the application, but multiple
instances across the cluster.

For example, by deploying a unique custom Couchbase controller, Kubernetes gets
Couchbase-specific knowledge, and as each Couchbase pod gets deployed, it can
adequately configure and join it with the other Couchbase pods in the cluster. It’s
also important to keep in mind that provisioning a cluster is just one place where
having a custom controller helps to automate tasks – node failure, ad hoc scaling,
and many other management tasks also require Couchbase-specific knowledge
within Kubernetes in order to be properly automated.

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

24 | COUCHBASE ON KUBERNETES

INTRODUCING COUCHBASE AUTONOMOUS OPERATOR FOR KUBERNETES | 25

4. INTRODUCING
COUCHBASE

AUTONOMOUS
OPERATOR FOR

KUBERNETES

26 | COUCHBASE ON KUBERNETES

INTRODUCING COUCHBASE AUTONOMOUS OPERATOR FOR KUBERNETES | 27

INTRODUCTION
The Couchbase Autonomous Operator provides native integration of
Couchbase Server with Open Source Kubernetes and Red Hat OpenShift. It
enables you to automate the management of everyday Couchbase tasks such
as the configuration, creation, scaling, and recovery of Couchbase clusters. By
reducing the complexity of running a Couchbase cluster, it lets you focus on the
desired configuration and not worry about the details of manual deployment
and lifecycle management.

Why It Is Called “Autonomous”

In general, autonomous software means self-healing and self-managing
intelligent systems.

The goal of the Autonomous Operator is to fully self-manage one or more
Couchbase deployments so that you don’t need to worry about the operational
complexities of running Couchbase. Not only does the Autonomous Operator
automatically administer your Couchbase cluster, it also self-heals and self-
manages the cluster according to Couchbase best practices

How Autonomous Operator Works

The Autonomous Operator works by extending the Kubernetes API through the
use of a CustomResourceDefinition (CRD). This allows us to create a custom
native resource in Kubernetes that is similar to a StatefulSet or a Deployment,
but in this case, is designed specifically for managing a Couchbase deployment.

What are Kubernetes built-in resources?

Here is a high-level overview of the basic types of resources provided by the
Kubernetes API and their primary functions.

• Workloads are objects used to manage and run containers on the cluster

• Discovery & LB resources are objects used to “stitch” workloads
together into an externally accessible, load-balanced service

• Config & Storage resources are objects used to inject initialization data
into applications and to persist data that is external to the container

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions

28 | COUCHBASE ON KUBERNETES

• Cluster resources are objects used to define how the cluster itself is
configured; these are typically used solely by cluster operators

• Metadata resources are objects used to configure the behavior of
other resources within the cluster, such as HorizontalPodAutoscaler for
scaling workloads

Kubernetes provides APIs to read and write Kubernetes built-in resource
objects via a Kubernetes API endpoint. Autonomous Operator uses those APIs to
manage resources for multiple instances across an entire Kubernetes cluster.

Autonomous Operator simulates the behavior of a DevOps DBA by observing the
current state of the Couchbase cluster, finding differences between the desired
state and the current state of the cluster, and then taking steps to alter the
cluster so that it matches the desired state. The steps are all achieved through
the use of the Kubernetes and Couchbase APIs.

For example, let’s say you want to scale your Couchbase cluster from three
instances to five instances to handle more workload. Autonomous Operator
would first look at the current state of the cluster, and using the Kubernetes
API, it will check how many instances are currently in the cluster, then check
the number of instances desired against the current state of the cluster, and
see that two more instances need to get added. The Autonomous Operator
would then use the Kubernetes API to provision a fourth and fifth instance,
and use the Couchbase API to add the new instances to the Couchbase cluster
and rebalance them in.

To illustrate this behavior, let’s see how Autonomous Operator works when new
instances are added to a cluster (see Figure 4.1 next page).

INTRODUCING COUCHBASE AUTONOMOUS OPERATOR FOR KUBERNETES | 29

Autonomous Operator

Current # of instances 3
• CB-0001, version 5.1.1
• CB-0002, version 5.1.1
• CB-0003, version 5.1.1

Updated CRD Config:
2 new instances
• CB-0004, version 5.1.1
• CB-0005, version 5.1.1

Desired # of instances 5
• Add new instances to the cluster
• Rebalance-in new instances

Couchbase Cluster

Observe

Analyze

Act

Figure 4.1: Autonomous Operator – observe, analyze, and act

COUCHBASE AUTONOMOUS
OPERATOR ARCHITECTURE
Autonomous Operator architecture consists of the following components
(see Figure 4.2 next page):

1. Server pods

2. Services

3. Volumes

When a Couchbase cluster gets deployed, additional Kubernetes resources such
as server pods, services, and volumes are created by the Autonomous Operator
to facilitate its deployment. All resources originating from the Autonomous
Operator get labeled to make it easy to list and describe the resources belonging
to a specific cluster.

30 | COUCHBASE ON KUBERNETES

Figure 4.2: Couchbase Autonomous Operator architecture

Server Pods

Autonomous Operator creates Couchbase pods that get labeled by cluster and
according to Couchbase service, which makes it possible to pinpoint the pods
providing a specific Couchbase service for a specific cluster.

Services

Services are created to facilitate both pod-to-pod communication and connections
from external clients to the internal cluster. The former is established using a
Kubernetes headless service, and the latter via the NodePort service. You can
read more about Kubernetes services here.

Volumes

As described earlier, Autonomous Operator supports both types of Kubernetes
volumes – ephemeral and persistent volumes.

We are looking forward to Kubernetes support for Persistent Local Storage as
it is the best fit for running databases, but in the meantime, we use ephemeral
storage by default unless persistent volume is configured.

https://kubernetes.io/docs/concepts/services-networking/service/#headless-services
https://kubernetes.io/docs/concepts/services-networking/service/#nodeport
https://kubernetes.io/docs/concepts/services-networking/service/
https://www.youtube.com/watch?v=GAuWDeaVjng

INTRODUCING COUCHBASE AUTONOMOUS OPERATOR FOR KUBERNETES | 31

GETTING STARTED WITH
AUTONOMOUS OPERATOR
To install the Autonomous Operator, all you need is a running Kubernetes or
OpenShift cluster.

If you don’t have access to a Kubernetes cluster, but still want to use the
Autonomous Operator for development, Minikube (single-node Kubernetes
cluster) and Minishift (single-node OpenShift cluster) make great alternatives.
Both of these products are much easier to install and deploy when compared to
setting up and running an actual Kubernetes or OpenShift cluster.

You can read about the prerequisites and guidelines and best practices for
Autonomous Operator which makes deploying Couchbase Server incredibly simple.

Once you have a Kubernetes or OpenShift cluster, you can then deploy Autonomous
Operator. The following links provide the complete instructions for deploying
Autonomous Operator on Open Source Kubernetes and Red Hat OpenShift.

You can download the Autonomous Operator package from Couchbase and
unpack it on the same computer where you usually run the Kubernetes
command-line tool, kubectl.

The Autonomous Operator package contains YAML configuration files and
command-line tools that you can use to install the Autonomous Operator and
Couchbase clusters.

The Autonomous Operator Configuration

The Autonomous Operator configuration mainly specifies deployment kind,
namespace, Docker image, service account, and replica count
(see Figure 4.3 next page).

When loaded into Kubernetes, it downloads the couchbase/operator Docker
image from DockerHub, creates the CouchbaseCluster custom resource
definition (CRD), and starts listening for CouchbaseCluster events.

https://kubernetes.io/docs/tasks/tools/install-minikube/
https://docs.openshift.org/latest/minishift/getting-started/installing.html
https://docs.couchbase.com/operator/1.0/prerequisite-and-setup.html
https://docs.couchbase.com/operator/1.0/best-practices.html
https://docs.couchbase.com/operator/1.0/install-kubernetes.html
https://docs.couchbase.com/operator/1.0/install-openshift.html
https://www.couchbase.com/downloads?family=kubernetes
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#scaling-a-deployment
https://hub.docker.com/r/couchbase/operator/

32 | COUCHBASE ON KUBERNETES

Figure 4.3: Couchbase Autonomous Operator configuration

Changing the Namespace

By default, the Autonomous Operator gets deployed in default namespace unless
you change the metadata.namespace field. By design, the Autonomous Operator
manages Couchbase clusters deployed in the namespace that are within the
same namespace. There has been some discussion in the Kubernetes community
to allow Operators to manage deployments across namespaces, but it’s not yet
fully implemented and available in Kubernetes.

Changing the Autonomous Operator Container Image

If you’re not pulling the image from the official Couchbase Docker repository,
you change the spec.spec.containers[0].image field to update the Autonomous
Operator container image location.

INTRODUCING COUCHBASE AUTONOMOUS OPERATOR FOR KUBERNETES | 33

If you’re running the Autonomous Operator in Red Hat OpenShift, then the
container images get pulled from registry.connect.redhat.com/couchbase/
operator:1.0.0-1. Before creating the Autonomous Operator, you must first create
a personal secret by presenting a valid username and password as follows:

$ oc create secret docker-registry rh-catalog --docker-
server=registry.connect.redhat.com --docker-username=<CUSTOMER
USERNAME> --docker-password=<CUSTOMER PASSWORD> --docker-
email=<VALID REDHAT EMAIL>

For example:

$ oc create secret docker-registry rh-catalog --docker-
server=registry.connect.redhat.com --docker-username=redcouch
--docker-password=openshift --docker-email=redcouchredhat@gmail.com

Then we created a secret to pull it into the registry:

$ oc secrets add serviceaccount/couchbase-operator secrets/rh-catalog
--for=pull
$ oc secrets add serviceaccount/default secrets/rh-catalog --for=pull

Changing the Name

By default, the name of the deployment gets created for the Autonomous Operator
and is called couchbase-operator. If you need to change it for some reason, ensure
that you change the metadata.name, spec.template.metadata.labels.name, and
spec.spec.containers[0].name fields. These fields must all have the same value.

It is recommended that you use the couchbase-operator name since it is used in
all of the examples and tutorials in our documentation.

Changing the Service Account

You can update the spec.spec. serviceAccountName for your environment in the

https://docs.couchbase.com/operator/1.0/demo.html

34 | COUCHBASE ON KUBERNETES

sample configuration it uses for couchbase-operator. Note that this field only
takes effect if your Kubernetes environment has been RBAC enabled.

Changing the Replica Count

Usually, deployments are used to create multiple instances of a pod to provide
redundancy. However, when deploying the Autonomous Operator, you should
always set replicas to 1 because the Autonomous Operator pod uses leader
election to ensure that only one Kubernetes Operator is running in a specific
namespace. If you start more than one Autonomous Operator pod in the same
namespace, only the first one gets created successfully. The Autonomous
Operator uses a deployment controller so that if the Autonomous Operator pod
dies, a new Autonomous Operator pod gets created and picks up from where the
old one left off.

Create the Autonomous Operator

You can now create and start the Autonomous Operator by running one
single command:

kubectl create -f operator.yaml

After you run the “kubectl create” command, it generally takes less than
a minute for Kubernetes to deploy the Autonomous Operator and for the
Autonomous Operator to be ready to run.

Prerequisites for Deploying a Couchbase Cluster

Before deploying a Couchbase cluster with the Autonomous Operator, ensure
that you have done the following:

• Reviewed the prerequisites

• Deployed the Autonomous Operator, and verified it is up and running

• Downloaded the Autonomous Operator package from Couchbase and
installed cbopctl

https://docs.couchbase.com/operator/1.0/prerequisite-and-setup.html
https://www.couchbase.com/downloads?family=kubernetes
https://docs.couchbase.com/operator/1.0/cbopctl.html

INTRODUCING COUCHBASE AUTONOMOUS OPERATOR FOR KUBERNETES | 35

Note: cbopctl is a command-line tool similar to kubectl or oc, except that it
performs an extra check on the CouchbaseCluster configuration being sent to
Kubernetes to ensure that it is valid.

cbopctl is the recommended way to install Couchbase Server with Autonomous
Operator 1.0 since Kubernetes 1.9 and 1.10 does not ship CRD validation yet. As
of this writing CRD validation is beta in Kubernetes 1.11.

The Autonomous Operator package also contains YAML configuration files that
will help you set up a Couchbase cluster.

CouchbaseCluster Configuration

Here is a sample configuration file for the CouchbaseCluster (see Figure 4.4 next
page). The top-level parameters for a CouchbaseCluster configuration include –
apiversion, kind, metadata, and spec.

https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/#validation
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/#required-fields

36 | COUCHBASE ON KUBERNETES

Figure 4.4: CouchbaseCluster configuration

apiVersion

The apiVersion field specifies the Kubernetes API version we’re using to create
the Autonomous Operator object. You can update the API version whenever new
features are added. For any given release, the API versions that are supported
by the Autonomous Operator will be specified in the documentation. It is
recommended that you upgrade to the latest API version whenever possible.

Field rules: The apiVersion field is required and must be set to a valid API
version. The value of this field cannot be changed after the cluster is created.

kind

The kind field specifies that the Kubernetes configuration will use the custom
Couchbase controller to manage the cluster.

INTRODUCING COUCHBASE AUTONOMOUS OPERATOR FOR KUBERNETES | 37

Field rules: The kind field is required and must always be set to CouchbaseCluster.
The value of this field cannot be changed after the cluster is created.

metadata

The metadata field allows setting a name for the Couchbase cluster and a
namespace that the cluster should be deployed in.

Field rules: A name is highly recommended, but not required. If values are not
set in the metadata field, then defaults will be enabled. The value of name will
be autogenerated and the value of namespace will be set to default. The value of
these fields cannot be changed after the cluster is created.

spec

This section describes the top-level parameters related to a Couchbase
cluster deployment.

baseImage

The baseImage field specifies the image that should be used.

Field rules: The baseImage field is required and should be set to couchbase/
server unless you want Kubernetes to pull the Couchbase Server Docker
container from a different location. The value of this field cannot be changed
after the cluster is created.

version

The version field specifies the version number of Couchbase Server to install.
This should match an available version number in the Couchbase Docker
repository. It may never be changed to a lower version number than the version
that is currently running.

Field rules: The version field is required and should be set to the version of
Couchbase Server that should be used to build the cluster. The value of this field
cannot be changed after the cluster is created.

38 | COUCHBASE ON KUBERNETES

paused

The paused field specifies whether or not the Autonomous Operator is currently
managing the cluster. This parameter should generally be set to true but may be
set to false if you decide to make manual changes to the cluster.

By disabling the Autonomous Operator, you can change the cluster configuration
without having to worry about the Autonomous Operator reverting the changes.
However, before re-enabling the Autonomous Operator, ensure that the
Kubernetes configuration matches the cluster configuration.

Field rules: The paused field is not required and defaults to false if not specified.

antiAffinity

The antiAffinity field specifies whether or not two pods in the cluster can be
deployed on the same Kubernetes node. In a production setting this parameter
should always be set to true in order to reduce the chance of data loss in case a
host Kubernetes node crashes.

Field rules: The antiAffinity field is not required and defaults to false if not
specified. The value of this field cannot be changed after the cluster is created.

tls

The tls field is optional and controls whether the Autonomous Operator uses
TLS for communication with the cluster. It also sets the TLS certificates that
are used by Couchbase clients and XDCR. Refer to the TLS documentation for
more information.

authSecret

The authSecret field specifies the name of a Kubernetes secret that should be
used as the user name and password of the Couchbase superuser.

Field rules: The authSecret field is required and should reference the name of a
Kubernetes secret that already exists. The value of this field cannot be changed
after the cluster is created.

https://docs.couchbase.com/operator/1.0/tls.html
https://kubernetes.io/docs/concepts/configuration/secret/

INTRODUCING COUCHBASE AUTONOMOUS OPERATOR FOR KUBERNETES | 39

exposeAdminConsole

The exposeAdminConsole field specifies whether or not the Couchbase Server
Web Console should be exposed externally. Exposing the web console is done
using a NodePort service, and the port for the service can be found in the
describe output when describing this cluster. This parameter may be changed
while the cluster is running, and the Autonomous Operator will create/destroy
the NodePort service as appropriate.

Field rules: The exposeAdminConsole field is not required and defaults
to false if not specified. If set to true the specification must also have the
adminConsoleServices property defined.

adminConsoleServices

When the Couchbase Server Web Console is exposed with the exposeAdminConsole
property, by default, opening a browser session to the Web Console will be
automatically load balanced across all pods in the cluster to provide high
availability. However, the Web Console will display different features based on
the services that are running on the particular pod that it’s connected to.

This property allows the UI service to be constrained to pods running one or
more specific services. The services that you specify are subtractive in nature –
they will only identify pods running all of those services – so care must be used.
For example, if the cluster is deployed with multi-dimensional scaling, the
data service on one set of pods and the analytics service on another mutually
exclusive set, then specifying data and analytics as your Web Console services
list would result in the Web Console not being accessible – no pods match all the
constraints (i.e., no pods are running both the data and analytics services).

If you require access to a specific pod running a specific service, this can also be
achieved by using the admin option of the exposedFeatures property. This will
allow access via a NodePort. You must connect directly to the IP address of the
node that the pod is running on. The assigned NodePort is available via the
cluster status structure returned by kubectl describe, or via the output of kubectl
get services. Refer to the services documentation for more information.

https://docs.couchbase.com/operator/1.0/couchbase-cluster-config.html#adminconsoleservices
https://docs.couchbase.com/operator/1.0/couchbase-cluster-config.html#exposeadminconsole
https://docs.couchbase.com/operator/1.0/couchbase-cluster-config.html#exposedfeatures
https://docs.couchbase.com/operator/1.0/services.html

40 | COUCHBASE ON KUBERNETES

Field rules: The adminConsoleServices list is not required and defaults to an
empty list. Valid item names are data, index, query, search, eventing, and
analytics, and must be unique. An empty list means that any node in the cluster
may be chosen when connecting to the Couchbase Server Web Console.

exposedFeatures

The exposedFeatures field specifies a list of per-pod features to expose on the
cluster network (as opposed to the pod network). These define sets of ports
which are required to support the specified features. The supported values
are as follows:

• admin – Exposes the admin API and UI

• xdcr – Exposes the ports necessary to support XDCR via L3 connectivity
at the cluster network layer

• client – Exposes all client services, which include data, views, query,
full-text search, and analytics

Field rules: The exposedFeatures list is optional; no feature sets are exposed to
the cluster network if unset.

softwareUpdateNotifications

The softwareUpdateNotifications field specifies whether or not software update
notifications are displayed in the Couchbase UI. This provides a visual indication
as to whether a software update is available and should be applied in order to
increase functionality or fix defects.

Field rules: The softwareUpdateNotifications field is optional and defaults to false
if not specified. This setting can be modified at any point in the cluster lifecycle.

serverGroups

Setting the field enables automatic management of Couchbase server groups.
The end user is responsible for adding labels to their Kubernetes nodes which
will be used to evenly distribute nodes across server groups, so the cluster is

INTRODUCING COUCHBASE AUTONOMOUS OPERATOR FOR KUBERNETES | 41

tolerant to the loss of an entire data serverGroups center (or any other desired
failure domain). Nodes are labeled with a key of failure-domain.beta.kubernetes.
io/zone and an arbitrary name string. Multiple nodes may have the same server
group to allow multiple pods to be scheduled there regardless of antiAffinity
settings. An example of applying the label is as follows:

kubectl label nodes ip-172-22-22-22 failure-
domain.beta.kubernetes.io/zone=us-east-1a

As the list of server groups to use is explicit, the end user has flexibility in
controlling exactly where pods will be scheduled (e.g., one cluster may reside in
one set of server groups, and another cluster in another set of server groups).

At present, the scheduling simply stripes pods across the server groups; each
new pod is run in a server group with the fewest existing cluster members. This
is performed on a per-server configuration basis to ensure individual classes
of servers are equally distributed for high availability. For each class of server
configuration, you may choose to override the set of server groups to schedule
across. For additional information, see the documentation under the spec.
servers.serverGroups configuration key.

The server group feature does not support service redistribution at this time,
so scaling the set of server groups will not result in any pods being “moved” to
make best use of the new topology or evacuated from a removed server group.

Field rules: The serverGroups field is optional. If pods will be scheduled across
the specified set of server groups, the server groups must be set at cluster
creation time, and, at this time, should be assumed to be immutable.

securityContext

The securityContext field is a Kubernetes PodSecurityContext object which is
attached to all pods that are created by the Autonomous Operator. If unspecified,
this will default to the couchbase user, mount attached volumes as that user, and

42 | COUCHBASE ON KUBERNETES

ensure that the containers are running as non-root. You may override the default
behavior if using a custom container image or for testing purposes.

Field rules: The securityContext field is optional. If set, this will be attached to all
new pods that are created by the Autonomous Operator. This field should not be
modified during the cluster lifecycle.

disableBucketManagement

The disableBucketManagement field specifies whether to ignore the bucket
configuration. When disableBucketManagement is set to false (the default), the
Autonomous Operator will have sole control over creating the buckets that are
specified in the configuration (and deleting the buckets that are not).

If set to true, the creation and deletion of buckets must be done manually using
the Couchbase Server Web Console, CLI, REST API, or SDK. Even if buckets are
specified in the configuration, as long as disableBucketManagement is set to
false, the Autonomous Operator will not create or delete any buckets.

Field rules: The disableBucketManagement field is optional and defaults to false.

spec.cluster

This section describes the various Couchbase cluster settings. This section is not
meant to encompass every setting that is configurable on Couchbase. Cluster
settings not mentioned here can be managed manually.

dataServiceMemoryQuota

The dataServiceMemoryQuota field is the amount of memory to assign to the
data service if it is present on a specific Couchbase node. The amount of memory
is defined in megabytes (MB).

Field rules: The dataServiceMemoryQuota field is required and must be set to be
greater than or equal to 256. Keep in mind that the sum of all memory quotas
must be no more than 80% of a pod’s available memory.

INTRODUCING COUCHBASE AUTONOMOUS OPERATOR FOR KUBERNETES | 43

indexServiceMemoryQuota

The indexServiceMemoryQuota field is the amount of memory to assign to
the index service if it is present on a specific Couchbase node. The amount of
memory is defined in megabytes (MB).

Field rules: The indexServiceMemoryQuota field is required and must be set to be
greater than or equal to 256. Keep in mind that the sum of all memory quotas
must be no more than 80% of a pod’s available memory.

searchServiceMemoryQuota

The searchServiceMemoryQuota field is the amount of memory to assign to
the search service if it is present on a specific Couchbase node. The amount
of memory is defined in megabytes (MB). This parameter defaults to 256MB
if it is not set.

Field rules: The searchServiceMemoryQuota field is required and must be set to
be greater than or equal to 256. Keep in mind that the sum of all memory quotas
must be no more than 80% of a pod’s available memory.

eventingServiceMemoryQuota

The eventingSearchMemoryQuota field is the amount of memory to assign to
the eventing service if it is present on a specific Couchbase node. The amount of
memory is defined in megabytes (MB). This parameter defaults to 256MB if it is
not set.

Field rules: The eventingServiceMemoryQuota field is required and must be set to
be greater than or equal to 256. Keep in mind that the sum of all memory quotas
must be no more than 80% of a pod’s available memory.

analyticsServiceMemoryQuota

The analyticsServiceMemoryQuota field is the amount of memory to assign to
the search service if it is present on a specific Couchbase node. The amount of
memory is defined in megabytes (MB). This parameter defaults to 1,024MB
if it is not set.

44 | COUCHBASE ON KUBERNETES

Field rules: The analyticsServiceMemoryQuota field is required and must be set
to be greater than or equal to 1,024. Keep in mind that the sum of all memory
quotas must be no more than 80% of a pod’s available memory.

indexStorageSetting

The indexStorageSetting field specifies the backend storage type to use for
the index service. If the cluster already contains a Couchbase Server instance
running the index service, then this parameter cannot be changed until all
Couchbase instances running the index service are removed.

Field rules: The indexStorageSetting is required and must be set to either plasma
or memory-optimized. The value of this field can only be changed if there are no
index nodes in the cluster.

autoFailoverTimeout

The autoFailoverTimeout field specifies the auto-failover timeout in seconds.
The Autonomous Operator relies on the CouchbaseCluster to auto-failover nodes
before removing them, so setting this field to an appropriate value is important.

Field rules: The autoFailoverTimeout is required and must be in the range
of 5-3,600sec.

autoFailoverMaxCount

The autoFailoverMaxCount field specifies the maximum number of failover
events that can be tolerated before manual intervention is required. If a bucket
has two replicas, it can tolerate two pods failing over. This also applies to entire
server groups.

Field rules: The autoFailoverMaxCount is required and must be in the
range of 1-3.

autoFailoverOnDataDiskIssues

The autoFailoverOnDataDiskIssues field specifies whether a node will
automatically failover on data disk issues.

INTRODUCING COUCHBASE AUTONOMOUS OPERATOR FOR KUBERNETES | 45

Field rules: The autoFailoverOnDataDiskIssues is required and must be
true or false.

autoFailoverOnDataDiskIssuesTimePeriod

The autoFailoverOnDataDiskIssuesTimePeriod field specifies the time period to
wait before automatically failing over a node experiencing data disk issues. This
field’s units are in seconds.

Field rules: The autoFailoverOnDataDiskIssuesTimePeriod is only required if
autoFailoverOnDataDiskIssues is also set to true, and must be in the range
of 5-3,600sec.

autoFailoverServerGroup

The autoFailoverServerGroup field specifies whether the cluster will
automatically failover an entire server group.

Field rules: The autoFailoverServerGroup is optional, defaulting to false.

spec.buckets

This section describes one or more buckets that must be created in the cluster.

name

The name field specifies the name of the bucket. This parameter is required
when specifying a bucket.

Field rules: The name is required and must be a string using characters and
numbers. The value of this field cannot be changed after the bucket is created.

type

The type field specifies the type of bucket to create. This parameter can be set
to couchbase, ephemeral, or memcached. If the type is not specified, it defaults
to couchbase.

46 | COUCHBASE ON KUBERNETES

Field rules: The type is required and must be set to couchbase, ephemeral, or
memcached. The value of this field cannot be changed after the bucket is created.

memoryQuota

The memoryQuota field specifies the amount of memory to allocate to this
bucket in megabytes (MB). If the quota is not specified, it defaults to 100.

Field rules: The memoryQuota is required and must be set to greater than or
equal to 100.

replicas

The replicas field specifies the number of replicas that should be created for
this bucket. This value may be set between 0 and 3 inclusive. If the number is
not set, it defaults to 1. Note that this parameter has no effect for the memcached
bucket type.

Field rules: The replicas field is required for buckets with type couchbase and
ephemeral and must be set between 0 and 3. Memcached buckets will ignore
values in this field. Changing the value of this field will cause a rebalance to
occur.

ioPriority

The ioPriority field sets the IO priority of background threads for this bucket.
This option is valid for couchbase and ephemeral buckets only. Memcached
buckets will ignore values in this field.

Field rules: The ioPriority is required for buckets with type couchbase and
ephemeral and must be set to either high or low. Memcached buckets will ignore
values in this field. Changing the value of this field will cause downtime while
the bucket is restarted.

evictionPolicy

The evictionPolicy field sets the memory-cache eviction policy for this bucket.
This option is valid for couchbase and ephemeral buckets only.

INTRODUCING COUCHBASE AUTONOMOUS OPERATOR FOR KUBERNETES | 47

Couchbase buckets support either valueOnly or fullEviction. Specifying the
valueOnly policy means that each key stored in this bucket must be kept in
memory. This is the default policy; using this policy improves the performance
of key-value operations but limits the maximum size of the bucket. Specifying
the fullEviction policy means that the performance is impacted for key-value
operations, but the maximum size of the bucket is unbounded.

Ephemeral buckets support either noEviction or nruEviction. Specifying noEviction
means that the bucket will not evict items from the cache if the cache is full. This
type of eviction policy should be used for in-memory database use cases.

Specifying nruEviction means that items not recently used will be evicted from
memory when all the memory in the bucket is used. This type of eviction policy
should be used for caching use cases.

Field rules: The evictionPolicy is required for buckets with type couchbase and
ephemeral. Memcached buckets will ignore values in this field. Changing the
value of this field will cause downtime while the bucket is restarted.

conflictResolution

The conflictResolution field specifies the bucket’s conflict resolution mechanism
which is to be used if a conflict occurs during cross datacenter replication (XDCR).
There are two supported mechanisms: sequence-based and timestamp-based.

The sequence-based conflict resolution mechanism selects the document that
has been updated the greatest number of times since the last sync. For example,
if one cluster has updated a document twice since the last sync, and the other
cluster has updated the document three times, the document updated three times
is selected regardless of the specific times at which these updates took place.

The timestamp-based conflict resolution mechanism selects the document with
the most recent timestamp. This is only supported when all of the clocks on all
of the nodes are fully synchronized.

48 | COUCHBASE ON KUBERNETES

Field rules: The conflictResolution field is required for buckets with type
couchbase and ephemeral and can be set to either seqno or lww. Memcached
buckets will ignore values in this field. The value of this field cannot be changed
after the bucket has been created.

enableFlush

The enableFlush field specifies whether or not to enable the flush command on
this bucket. This parameter defaults to false if it is not specified. This parameter
only affects couchbase and ephemeral buckets.

Field rules: The enableFlush field can be set to either true or false. If this
parameter is not specified, it defaults to false.

enableIndexReplica

The enableIndexReplica field specifies whether or not to enable view index
replicas for this bucket. This parameter defaults to false if it is not specified. This
parameter only affects couchbase buckets.

Field rules: The enableIndexReplica field is required for buckets with type
couchbase and can be set to either true or false. Memcached and ephemeral
buckets will ignore values in this field.

spec.servers

In the spec.servers field, you must specify at least one – but possibly multiple –
node specifications. A node specification is used to allow multi-dimensional
scaling of a Couchbase cluster with Kubernetes.

Specification rules: The server’s portion of the specification is required and must
always contain at least one server definition. There must also be at least one
definition that contains the data service.

size

The size field specifies the number of nodes of this type that should be in
the cluster. This allows the user to scale up different parts of the cluster as

https://docs.couchbase.com/server/5.5/clustersetup/services-mds.html
https://docs.couchbase.com/server/5.5/clustersetup/services-mds.html

INTRODUCING COUCHBASE AUTONOMOUS OPERATOR FOR KUBERNETES | 49

necessary. If this parameter is changed at runtime, the Autonomous Operator
will automatically scale the cluster.

Field rules: The size is required and can be set to greater than or equal to 1.

name

The name field specifies a name for this group of servers.

Field rules: The name field is required and must be unique in comparison to the
name field of other server definitions. The value of this field cannot be changed
after a server has been defined.

services

The services field specifies a list of services that should be run on nodes of this
type. Users can specify data, index, query, search, eventing, and analytics in the
list. At least one service must be specified, and all clusters must contain at least
one node specification that includes the data service.

Field rules: The services list is required and must contain at least one service.
Valid values for services are data, index, query, search, eventing, and analytics.
The values of this list cannot be changed after a server has been defined.

serverGroups

The serverGroups field controls the set of server groups to schedule pods in.
Functionality is identical to that defined in the top-level specification but
overrides it and allows the end user to specify exactly where pods of individual
server/service configuration are scheduled. See serverGroups documentation
for more details.

spec.servers.pod

The pod policy defines settings that apply to all pods deployed with this
node configuration. A pod always contains a single running instance of
Couchbase Server.

https://docs.couchbase.com/operator/1.0/scaling-couchbase.html
https://docs.couchbase.com/operator/1.0/couchbase-cluster-config.html#servergroups_main

50 | COUCHBASE ON KUBERNETES

couchbaseEnv

The couchbaseEnv field specifies the environment variables (as key-value pairs)
that should be set when the pod is started. This section is optional.

Field rules: The value of couchbaseEnv field cannot be changed after a server
has been defined.

resources

• limits – This field lets you reserve resources on a specific node. It defines
the maximum amount of CPU, memory, and storage the pods created in
this node specification will reserve.

• requests – This field lets you reserve resources on a specific node. The
requests section defines the minimum amount of CPU, memory, and
storage the pods created in this node specification will reserve.

labels

Labels are key-value pairs that are attached to objects in Kubernetes. They are
intended to specify identifying attributes of objects that are meaningful to the
user and do not directly imply semantics to the core system. Labels can be used
to organize and select subsets of objects. They do not need to be unique across
multiple objects. This section is optional.

Labels added in this section will apply to all pods added in this cluster.
Note that by default we add the following labels to each pod, which should
not be overridden.

app:couchbase
couchbase_cluster:<metadata:name>

In the sample configuration file referenced in this topic, the label would be
couchbase_cluster:cb-example.

INTRODUCING COUCHBASE AUTONOMOUS OPERATOR FOR KUBERNETES | 51

The label format for the first pod is: couchbase_node: <metadata:name>-
<gen node id>.

In the sample configuration file referenced in this topic, the label for the first
pod would be couchbase_node:cb-example-0000.

For more information, see the Kubernetes documentation about labels.

Field rules: The value of the labels field cannot be changed after a server
has been defined.

nodeSelector

The nodeSelector field specifies a key-value map of the constraints on node
placement for pods. For a pod to be eligible to run on a node, the node must have
each of the indicated key-value pairs as labels (it can have additional labels as
well). If this section is not specified, then Kubernetes will place the pod on any
available node. For more information, see the Kubernetes documentation about
label selectors.

Field rules: The value of the nodeSelector field cannot be changed after a server
has been defined.

tolerations

The tolerations field specifies conditions upon which a node should not be
selected when deploying a pod. From the sample configuration file referenced
in this topic, you can see that any node with a label app:cbapp should not be
allowed to run the pod defined in this node specification. You might do this if
you have nodes dedicated for running an application using Couchbase where
you don’t want the database and application to be running on the same node.
For more information about tolerations, see the Kubernetes documentation on
taints and tolerations. The tolerations section is optional.

Field rules: The value of the tolerations field cannot be changed after a server
has been defined.

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/

52 | COUCHBASE ON KUBERNETES

spec.servers.pod.volumeMounts

The VolumeMounts configuration specifies the claims to use for the storage that
is used by the Couchbase Server cluster.

default

The default field is required when using persistent volumes. The value specifies
the name of the volumeClaimTemplate that is used to create a persisted volume
for the default path. This is always /opt/couchbase/var/lib/couchbase. The claim
must match the name of a volumeClaimTemplate within the spec.

data

The data field is the name of the volumeClaimTemplate that is used to create a
persisted volume for the data path. When specified, the data path will be /mnt/
data. The claim must match the name of a volumeClaimTemplate within the
spec. If this field is not specified, then a volume will not be created, and the data
directory will be part of the “default” volume claim.

index

The index field is the name of the volumeClaimTemplate that is used to create
a persisted volume for the index path. When specified, the index path will be /
mnt/index. The claim must match the name of a volumeClaimTemplate within the
spec. If this field is not specified, then a volume will not be created, and the data
directory will be part of the “default” volume claim.

analytics

The analytics field is the name of the volumeClaimTemplate that is used to
create a persisted volume for the analytics paths. When specified, the analytics
paths will be /mnt/analytics-00 (where 00 denotes the first path), with all
subsequent paths having incrementing values. The claim must match the name
of a volumeClaimTemplate within the spec. If this field is not specified, then
a volume will not be created, and the data directory will be part of the
“default” volume claim.

INTRODUCING COUCHBASE AUTONOMOUS OPERATOR FOR KUBERNETES | 53

spec.volumeClaimTemplates

The spec.volumeClaimTemplates field defines a template of a persistent volume
claim. At runtime, the Autonomous Operator will create a persistent volume
from this template for each pod. Claims can request volumes from various types
of storage systems as identified by the storage class name.

spec.volumeClaimTemplates.metadata

• name – The metadata name identifies the claim template. This name
is used by the volumeMounts to reference which template to fulfill the
mount request.

spec.volumeClaimTemplates.spec

• storageClassName – The storageClassName is required by the claim. A
storageClassName provides a way for administrators to describe the
classes of storage they offer. If no storageClassName is specified, then
the default storage class is used. Refer to the Kubernetes documentation
for more information about storage classes.

• Resources – This defines the minimum resources the volume should have.
Only the storage requests are valid in this context.

Deploying a Couchbase Cluster

You can create a Couchbase cluster by running one single command:

cbopctl create -f couchbase-cluster.yaml

After receiving the configuration, the Autonomous Operator automatically
begins creating the cluster. The amount of time it takes to create the cluster
depends on the configuration. You can track the progress of cluster creation
using the kubectl describe command.

https://kubernetes.io/docs/concepts/storage/storage-classes/
https://docs.couchbase.com/operator/1.0/cluster-status-guide.html

54 | COUCHBASE ON KUBERNETES

Here is a flow diagram (see Figure 4.5 below) that illustrates the steps
described above:

• Create and run Operator.yml file

 ¡ It creates services, pods, and volumes

• Create and deploy CouchbaseCluster.yml file

 ¡ Couchbase cluster gets deployed with correct configuration,
topology, persistent volumes, and server groups

Kubernetes Cluster

Namespace: kube-system

Pod: couchbase-operator Pod: my-cluster-0000

Pod: my-cluster-0001

CouchbaseCluster: my-cluster

Pod: my-cluster-0004

Query Service

Pod: my-cluster-0002

Pod: my-cluster-0003

Index ServiceData Service

Namespace: my-namespace

Services

Volumes

Pods

54

Pod: etcd

CRD
Couchbase

Cluster

Couchbase
Cluster

my-cluster

2

Pod: kube-api Pod: kube-dns

my-cluster-0000.my-cluster.my-namespace.svc
my-cluster-0001.my-cluster.my-namespace.svc
my-cluster-0002.my-cluster.my-namespace.svc
my-cluster-0003.my-cluster.my-namespace.svc
my-cluster-0004.my-cluster.my-namespace.svc

Pod: kube-controller

3

1

Figure 4.5: Flow diagram illustrating deployment steps

COUCHBASE AUTONOMOUS OPERATOR
1.0 HIGHLIGHTS

Automated Cluster Provisioning

Once you have defined a configuration (i.e., custom resource definition file
that is like a blueprint for your Couchbase cluster), Autonomous Operator

INTRODUCING COUCHBASE AUTONOMOUS OPERATOR FOR KUBERNETES | 55

then automatically deploys your Couchbase Server cluster based on that
configuration. The Autonomous Operator takes care of all the heavy
lifting, such as:

• Creating server pods

• Creating services and routes

• Creating persistent volume

• Configuring Couchbase cluster

 ¡ Cluster settings

 ¡ Buckets

 ¡ Multi-dimensional scaling for Couchbase services

 ¡ Server groups for rack/zone awareness

Once you’ve created a configuration file, you can use it to quickly deploy the
same configuration across development, test, and production environments; or
use it as a starting point to create deployments that fit even more use cases.

Read more about automated cluster provisioning.

On-Demand Scalability

The scaling of a Couchbase cluster is automated through Autonomous Operator.
Autonomous Operator uses the same configuration file to scale a Couchbase
cluster that you used to deploy it. Scaling a Couchbase cluster up or down is as
simple as updating the “size” field under “Server” configuration file, and then the
Autonomous Operator autonomously handles all of the pod creation/deletion, as
well as the rebalancing of nodes in and out of the Couchbase cluster.

Read more about on-demand scaling.

Automated Recovery

One of the most essential aspects of a database is “data availability”; for example,
in the case of node failure, how quickly data becomes available and how quickly
the cluster returns to capacity.

https://docs.couchbase.com/operator/1.0/deploying-couchbase.html
https://docs.couchbase.com/operator/1.0/scaling-couchbase.html

56 | COUCHBASE ON KUBERNETES

The Autonomous Operator is always monitoring the Couchbase cluster for
failures. When a node or server group failure is detected, the Autonomous
Operator automatically creates a new instance either on the same host machine
(preferably) or on a different host machine. It will then rebalance out the bad
instances, add the new instance, and bring the cluster back up to full capacity.

If a Couchbase cluster is configured with persistent volumes, the
Autonomous Operator:

1. Creates a new instance and attaches it to the same persistent volume .

2. Performs complex Couchbase operations such as delta-node recovery
and warm-up operations, which reduces rebalancing data from all other
instances which can be time-consuming depending on the size of data.

3. Removes the faulty instance from the Couchbase cluster and replaces it
with a new instance, ensuring that the cluster is back up to the desired
configuration without any loss of data.

Read more about automated recovery.

High Availability Across Distributed Infrastructure

Leveraging Kubernetes labels, the Autonomous Operator is capable of
automatically scheduling pod creation across failure domains and ensuring that
they get added to the right Couchbase server groups for rack/zone awareness.

Combined with support for XDCR and TLS, the Autonomous Operator can
automatically and securely recover a Couchbase cluster, even after the largest of
physical infrastructure failures, all while remaining available to your applications.

Persistent Storage

Persistent volumes offer a way to create Couchbase pods with data that resides
outside of the actual pod itself. This decoupling provides a higher degree of
resilience for data within the Couchbase cluster if a node goes down or its
associated pod gets terminated. Likewise, persistent volumes give you greater

https://docs.couchbase.com/operator/1.0/node-recovery.html
https://docs.couchbase.com/operator/1.0/server-groups.html
https://docs.couchbase.com/operator/1.0/xdcr.html
https://docs.couchbase.com/operator/1.0/tls.html

INTRODUCING COUCHBASE AUTONOMOUS OPERATOR FOR KUBERNETES | 57

flexibility and efficiency in your deployment because you can let Kubernetes
automatically move Couchbase pods between nodes without worrying about
any downtime or data loss.

The Autonomous Operator supports some of the most popular persistent
volumes from Kubernetes storage class – AWS , Azure Disk, GCE , Glusterfs, Ceph
RBD, and Portworx Volume.

Read more about persistent volumes.

Supportability

Couchbase provides extra tools to help prevent issues from occurring in your
deployment, as well as troubleshoot problems if things go wrong.

1. Configuration validation – Native Kubernetes tools (kubectl and
oc) don’t have enough knowledge about Couchbase to ensure that
your cluster configuration is valid. So Couchbase developed its own
command-line tool, cbopctl, which implements a custom subset of the
kubectl and oc commands to ensure that Couchbase configurations are
valid before they get uploaded to Kubernetes.

2. Log collection – To assist with troubleshooting and status monitoring,
Couchbase developed the cbopinfo command-line tool to collect
information and logs about any or all Couchbase clusters in a given
Kubernetes namespace.

Centralized Configuration Management

The Autonomous Operator allows you to enjoy the operational benefits of
Kubernetes without worrying about the administrative complexities. Instead
of logging into each Couchbase cluster individually, you can manage multiple
Couchbase clusters all through a single deployment of the Autonomous Operator.

https://kubernetes.io/docs/concepts/storage/storage-classes/#provisioner
https://kubernetes.io/docs/concepts/storage/storage-classes/#aws
https://kubernetes.io/docs/concepts/storage/storage-classes/#azure-disk
https://kubernetes.io/docs/concepts/storage/storage-classes/#gce
https://kubernetes.io/docs/concepts/storage/storage-classes/#glusterfs
https://kubernetes.io/docs/concepts/storage/storage-classes/#ceph-rbd
https://kubernetes.io/docs/concepts/storage/storage-classes/#ceph-rbd
https://kubernetes.io/docs/concepts/storage/storage-classes/#portworx-volume
https://docs.couchbase.com/operator/1.0/persisted-volumes-guide.html
https://docs.couchbase.com/operator/1.0/cbopctl.html
https://docs.couchbase.com/operator/1.0/cbopinfo.html

58 | COUCHBASE ON KUBERNETES

THE FUTURE IS BRIGHT | 59

5. THE FUTURE
IS BRIGHT

60 | COUCHBASE ON KUBERNETES

THE FUTURE IS BRIGHT | 61

We started this journey describing Kubernetes, how it works, and the key
benefits of running your database on it. We also provided a detailed overview of
Couchbase Autonomous Operator and how it makes development much easier.

At this point, you’ve likely started to form an opinion about Kubernetes
technology and the value of running your Couchbase Server database on it.

The next step is to consider your deployment options. You have three basic choices:

1. Private clouds – Use bare metal/physical servers you own (or buy/rent)
and install Open Source Kubernetes from scratch, or go with Enterprise
Kubernetes from Red Hat OpenShift.

2. Public clouds – Use infrastructure from a public cloud provider and
install Open Source Kubernetes from scratch or go with Enterprise
Kubernetes from Red Hat OpenShift. In this case, there is a distinct
advantage of not needing to buy physical hardware, but it is very
different than the bare metal option.

3. Public cloud managed service – Use one of the managed offerings from
the major cloud providers, for example AWS EKS, Azure AKS, and
Google GKE. This route allows you fewer configuration choices but gets
a lot easier than rolling out your own solution.

WHAT’S IN THE ROADMAP FOR
AUTONOMOUS OPERATOR?
We shipped Couchbase Autonomous Operator 1.0 in August 2018 and, as
highlighted in chapter 4, there are many great features delivered in this release.
Beyond 1.0, we have aggressive plans to ship many minor versions and release
2.0 in 2019.

Features we’re considering for future release:

1. Automated upgrade – Upgrade Couchbase cluster from version X to
version Y, fully automated with Autonomous Operator.

https://aws.amazon.com/eks/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://cloud.google.com/kubernetes-engine/

62 | COUCHBASE ON KUBERNETES

2. Automated backups – Configure Couchbase cluster to run a scheduled
backup on a fixed interval and leave it with Autonomous Operator to
fully manage it.

3. Monitoring – Plugin to integrate with Prometheus for monitoring your
Couchbase cluster.

4. Security – Define and configure your user and user roles through
CouchbaseCluster configuration.

5. Usage tracking – Track Couchbase usage for self-service provisioning
and usage reporting.

WHAT IS KUBERNETES? | 63

	1. WHAT IS KUBERETES?
	Introduction To Kubernetes – Manage And Scale Your Entire Application Stack
	Kubernetes Architecture
	Master Node
	Nodes
	Pods
	Volumes

	Getting Started

	2. WHY RUN COUCHBASE ON KUBERNETES?
	Introduction – How Kubernetes Conquers Stateful Cloud-Native Applications
	Why Run Couchbase On Kubernetes?
	Adopting a Hybrid Cloud or Multi-Cloud Strategy
	Moving Toward a Microservices Architecture
	Managing Hundreds of Globally Distributed Multi-Cloud Deployments

	3. KUBERETES STATEFULSETS AND OPERATOR?
	Kubernetes StatefulSets
	Kubernetes Operator
	StatefulSets versus Operator
	Limitations of StatefulSets
	Need for Operator: Stateless Is Easy, Stateful Is Hard

	4. INTRODUCING COUCHBASE AUTONOMOUS OPERATOR FOR KUBERETES
	Introduction
	Why It Is Called “Autonomous”
	How Autonomous Operator Works

	Couchbase Autonomous Operator Architecture
	Server Pods
	Services
	Volumes

	Getting Started with Autonomous Operator
	The Autonomous Operator Configuration
	Create the Autonomous Operator
	Prerequisites for Deploying a Couchbase Cluster
	CouchbaseCluster Configuration
	Deploying a Couchbase Cluster

	Couchbase Autonomous Operator 1.0 Highlights
	Automated Cluster Provisioning
	On-Demand Scalability
	Automated Recovery
	High Availability Across Distributed Infrastructure
	Persistent Storage
	Supportability
	Centralized Configuration Management

	5. THE FUTURE IS BRIGHT
	What’s In The Roadmap For Autonomous Operator?

	Blank Page

