
Third
Edition

 JavaScript
Cookbook
Programming
the Web

Adam D. Scott,
Matthew MacDonald

& Shelley Powers

Free
Chapters

compliments of

Learn How

Storage, Search,
and Analytics.
No Need to Choose
One Database,
Get It All.

https://www.couchbase.com/developers/?utm_source=oreilly&utm_medium=content_sponsorship&utm_campaign=developerExperience-oreillySponsoredContent-javascriptCookbook3e

Adam D. Scott, Matthew MacDonald,
and Shelley Powers

JavaScript Cookbook
This excerpt contains Chapters 17, 18, and 21. The complete book is available on the

O’Reilly Online Learning Platform and through other retailers.

THIRD EDITION

978-1-492-05575-4

[LSI]

JavaScript Cookbook, Third Edition
by Adam D. Scott, Matthew MacDonald, and Shelley Powers

Copyright © 2021 Adam D. Scott and Matthew MacDonald. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Jennifer Pollock
Development Editor: Angela Rufino
Production Editor: Katherine Tozer
Copyeditor: Sonia Saruba
Proofreader: James Fraleigh

Indexer: Potomac Indexing, LLC
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

July 2021: Third Edition

Revision History for the Third Edition
2021-07-16: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492055754 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. JavaScript Cookbook, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Couchbase. See our statement of editorial inde‐
pendence.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492055754
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Foreword. vii

17. Node Basics. 1
17.1 Managing Node Versions with Node Version Manager 1
17.2 Responding to a Simple Browser Request 4
17.3 Interactively Trying Out Node Code Snippets with REPL 6
17.4 Reading and Writing File Data 9
17.5 Getting Input from the Terminal 14
17.6 Getting the Path to the Current Script 16
17.7 Working with Node Timers and Understanding the Node Event Loop 17

18. Node Modules. 23
18.1 Searching for a Specific Node Module via npm 24
18.2 Converting Your Library into a Node Module 25
18.3 Taking Your Code Across Module Environments 26
18.4 Creating an Installable Node Module 29
18.5 Writing Multiplatform Libraries 35
18.6 Unit Testing Your Modules 39

21. Building Web Applications with Express. 43
21.1 Using Express to Respond to Requests 43
21.2 Using the Express-Generator 47
21.3 Routing 52
21.4 Working with OAuth 54
21.5 OAuth 2 User Authentication with Passport.js 64
21.6 Serving Up Formatted Data 69
21.7 Building a RESTful API 70
21.8 Building a GraphQL API 74

v

Foreword

JavaScript Cookbook (O’Reilly) is an invaluable resource for any full stack or backend
developer working with JavaScript. It provides practical solutions to common pro‐
gramming problems, organized into easy-to-follow recipes. Couchbase is highlight‐
ing three chapters that cover the essential topics of Node basics, Node modules, and
building web applications with Express. These topics will help any developer who has
some familiarity with JavaScript and wants to build a web API or a web application
that interacts with a JSON NoSQL database like Couchbase.

The first chapter, “Node Basics,” covers the basics of Node.js development, including
using NVM to switch between versions of Node, creating a web server response,
using REPL to test code snippets, utilizing the filesystem support, and the importance
of the __dirname and __filename variables. It also highlights that Node runs on a
single thread but interacts with threaded or asynchronous I/O operations through the
“event loop.” These are fundamental concepts for understanding how Node interacts
with external processes, as in the Couchbase Node.js SDK and other database/back‐
end services.

The second chapter, “Node Modules,” covers Node’s built-in modularity, which allows
developers to download and use Node modules by including a single require() state‐
ment. For example, Ottoman.js is a Node.js library that provides developers with
high-level abstractions that closely mirror the structure of their data. To include it in
your application, first use npm install ottoman, and then use require('ottoman')
within your code.

Modularity and the ability to include modules is a highly important concept to
understand about any ecosystem. This cookbook includes straightforward solutions
to the following fundamental topics:

vii

• Searching the npm website to find modules
• Node’s default module system, based on CommonJS
• Three key constructs: exports, require(), and module
• The package.json file for packaging and uploading modules to npm (with addi‐

tional coverage of a README file)

And perhaps most importantly, this chapter touches on the importance of unit test‐
ing, which is stressed as important for building modules, but is important for testing
all code.

Finally, the third chapter, “Building Web Applications With Express,” covers the
Express web framework for building web applications in Node. Express.js is appeal‐
ing to full stack and backend developers because it provides a lightweight, highly cus‐
tomizable framework for both building web applications and/or APIs.

Topics covered include:

• Express support for multiple templating engines and CSS preprocessors
• Using routes to respond to HTTP requests based on the request path and param‐

eters
• OAuth and OAuth 2 with Passport.js for authentication
• Serving formatted data that can be processed in webpages before display (partic‐

ularly noteworthy to full stack developers)

Finally, it covers building a REST API or a GraphQL. Perhaps most refreshing about
this section of the book, or at least most appropriate for a “cookbook,” is a lack of dis‐
cussion about which is better, REST or GraphQL. It simply presents these as two sep‐
arate problems to solve, and explains how Express can solve them. It also leaves the
actual backend data source out of the recipe, which makes the code more general
purpose, but does require you to fill in things like CRUD operations with the Couch‐
base Node.js SDK or the use of higher level abstractions with a tool like Ottoman.js.

Overall, these excerpts from JavaScript Cookbook can help both backend and full
stack developers. They cover essential topics such as Node.js basics, module develop‐
ment, and building web applications with Express. The practical examples and code
snippets provided in each chapter make it easy for developers to apply the concepts to
their own projects. Whether you’re a seasoned developer or just starting with Node.js,
this excerpt is a valuable reference that should not be missed.

viii | Foreword

I hope you enjoy this excerpt and find it useful. And if you’re a backend or full stack
developer who is evaluating databases, I hope you’ll consider checking out Couchbase
Capella™, the DBaaS from Couchbase. There’s a free Capella trial, no credit card
needed, that allows you to experiment with the Couchbase Node.js SDK and/or the
Ottoman.js library. The Capella trial comes with sample JSON data, which is a great
fit for a full stack approach that includes JavaScript and JavaScript standards all the
way from the database to the API to the front end.

—Matthew Groves

Foreword | ix

CHAPTER 17

Node Basics

The dividing line between “old” and “new” JavaScript occurred when Node.js
(referred to primarily as just Node) was released to the world. Yes, the ability to
dynamically modify page elements was an essential milestone, as was the emphasis on
establishing a path forward to new versions of ECMAScript, but it was Node that
really made us look at JavaScript in a whole new way. And it’s a way I like—I’m a big
fan of Node and server-side JavaScript development.

In this chapter, we’ll explore the basics of Node. At a minimum, you will need to have
Node installed, as covered in Chapter 1 or Recipe 17.1.

17.1 Managing Node Versions with Node Version Manager
Problem
You need to install and manage multiple versions of Node on your development
machine.

Solution
Use Node Version Manager (NVM), which allows you to install and use any dis‐
tributed version of Node on a per-shell basis. NVM is compatible with Linux, macOS,
and Windows Subsystem for Linux.

To install NVM, run the install script using either curl or wget in your system’s ter‐
minal application:

using curl:
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.37.2/install.sh | bash

1

https://github.com/nvm-sh/nvm

using wget:
wget -qO- https://raw.githubusercontent.com/nvm-sh/nvm/v0.37.2/install.sh | bash

If you are developing on Windows, we recommend using nvm-
windows, which is unaffiliated with the NVM project, but provides
similar functionality for the Windows operating system. For
instructions on how to use nvm-windows, consult the project’s
documentation.

Once you have installed NVM, you will need to install a version of Node. To install
the latest version of Node, run:

$ nvm install node

You can also install a specific version of Node:
install the latest path release of a major version
$ nvm install 15

install a specific major/minor/patch version
$ nvm install 15.6.0

Once you’ve installed Node, you’ll need to set a default version for new shell sessions.
This can either be the latest version of Node that has been installed or a specific ver‐
sion number:

default new shell sessions to the latest version of node
nvm alias default node
default new shell sessions to a specific version
nvm alias default 14

To switch the version being used in a shell session, use the nvm use command fol‐
lowed by a specific installed version:

$ nvm use 15

Discussion
Using NVM allows you to easily download and switch between multiple versions of
Node on your operating system. This can be incredibly useful when working with
libraries that support multiple versions and legacy codebases. It also simplifies the
management of Node within your development environment. You can view the list of
releases and support timelines for each release.

When using NVM, it’s possible to list out all of the versions installed on your
machine using the nvm ls command. This will show all of the installed versions, the
default version for new shell sessions, and any LTS versions that you do not have
installed:

2 | Chapter 17: Node Basics

https://github.com/coreybutler/nvm-windows
https://github.com/coreybutler/nvm-windows
https://oreil.ly/9IY83
https://oreil.ly/9IY83

$ nvm ls
 v8.1.2
 v8.11.3
 v10.13.0
-> v10.23.1
 v12.8.0
 v12.20.0
 v12.20.1
 v13.5.0
 v14.14.0
 v14.15.1
 v14.15.4
 v15.6.0
 system
default -> 14 (-> v14.15.4)
node -> stable (-> v15.6.0) (default)
stable -> 15.6 (-> v15.6.0) (default)
iojs -> N/A (default)
unstable -> N/A (default)
lts/* -> lts/fermium (-> v14.15.4)
lts/argon -> v4.9.1 (-> N/A)
lts/boron -> v6.17.1 (-> N/A)
lts/carbon -> v8.17.0 (-> N/A)
lts/dubnium -> v10.23.1
lts/erbium -> v12.20.1
lts/fermium -> v14.15.4

As you can see, I have several redundant patch versions of major releases installed on
my machine. To uninstall and remove a specific version, you can use the nvm unin
stall command:

nvm uninstall 14.14

Keeping track of which version of Node a project is designed to use can be a chal‐
lenge. To make this easier, you can add an .nvmrc file to your project’s root directory.
The contents of the file is the version of Node that the project is designed to use. For
example:

default to the latest LTS version
$ lts/*

to use a specific version
$ 14.15.4

To use the version specified in a project’s .nvmrc file, run nvm use command from the
root of the director.

17.1 Managing Node Versions with Node Version Manager | 3

For large projects, using a container technology, such as Docker, is
an incredibly useful way to ensure version matching across envi‐
ronments, including deployment. The Node documentation has a
helpful guide on Dockerizing a Node.js web app.

17.2 Responding to a Simple Browser Request
Problem
You want to create a Node application that can respond to a very basic browser
request.

Solution
Use the built-in Node HTTP server to respond to requests:

// load http module
const http = require('http');

// create http server
http
 .createServer((req, res) => {
 // content header
 res.writeHead(200, { 'content-type': 'text/plain' });

 // write message and signal communication is complete
 res.end('Hello, World!');
 })
 .listen(8124);

console.log('Server running on port 8124');

Discussion
A web server response to a browser request is the “Hello World” application for
Node. It demonstrates not only how a Node application functions, but how you can
communicate with it using a fairly traditional communication method: requesting a
web resource.

Starting from the top, the first line of the solution loads the http module using Node’s
require() function. This instructs Node’s modular system to load a specific library
resource for use in the application. The http module is one of the many that come, by
default, with a Node installation.

Next, an HTTP server is created using http.createServer(), passing in an anony‐
mous function, known as the RequestListener with two parameters. Node attaches
this function as an event handler for every server request. The two parameters are

4 | Chapter 17: Node Basics

https://oreil.ly/phXQZ

request and response. The request is an instance of the http.IncomingMessage object
and the response is an instance of the http.ServerResponse object.

The http.ServerResponse is used to respond to the web request. The http.Incoming
Message object contains information about the request, such as the request URL. If
you need to get specific pieces of information from the URL (e.g., query string
parameters), you can use the Node url utility module to parse the string.
Example 17-1 demonstrates how the query string can be used to return a more custom
message to the browser.

Example 17-1. Parsing out query string data

// load http module
const http = require('http');
const url = require('url');

// create http server
http
 .createServer((req, res) => {
 // get query string and parameters
 const { query } = url.parse(req.url, true);

 // content header
 res.writeHead(200, { 'content-type': 'text/plain' });

 // write message and signal communication is complete
 const name = query.first ? query.first : 'World';

 // write message and signal communication is complete
 res.end(`Hello, ${name}!`);
 })
 .listen(8124);

console.log('Server running on port 8124');

A URL like the following:
http://localhost:8124/?first=Reader

results in a web page that reads “Hello, Reader!”

In the code, the url module object has a parse() method that parses out the URL,
returning various components of it (href, protocol, host, etc.). If you pass true as
the second argument, the string is also parsed by another module, querystring,
which returns the query string as an object with each parameter as an object property,
rather than just returning a string.

17.2 Responding to a Simple Browser Request | 5

In both the solution and in Example 17-1, a text message is returned as page output,
using the http.ServerResponse end() method. I could also have written the message
out using write(), and then called end():

res.write(`Hello, ${name}!`);
res.end();

The important takeaway from either approach is you must call the response end()
method after all the headers and response body have been set.

Chained to the end of the createServer() function call is another function call, this
time to listen(), passing in the port number for the server to listen in on. This port
number is also an especially important component of the application.

Traditionally, port 80 is the default port for most web servers (that aren’t using
HTTPS, which has a default port of 443). By using port 80, requests for the web
resource don’t need to specify a port when requesting the service’s URL. However,
port 80 is also the default port used by our more traditional web server, Apache. If
you try to run the Node service on the same port that Apache is using, your applica‐
tion will fail. The Node application either must be standalone on the server, or run off
a different port.

You can also specify an IP address (host) in addition to the port. Doing this ensures
that people make the request to a specific host, as well as port. Not providing the host
means the application will listen for the request for any IP address associated with the
server. You can also specify a domain name, and Node resolves the host.

There are other arguments for the methods demonstrated, and a host of other meth‐
ods, but this will get you started. Refer to the Node documentation for more
information.

17.3 Interactively Trying Out Node Code Snippets
with REPL
Problem
You want to easily run server-based Node code snippets.

Solution
Use Node’s REPL (Read-Evalute-Print-Loop), an interactive command-line version of
Node that can run any code snippet.

To use REPL, type node at the command line without specifying an application to
run:

$ node

6 | Chapter 17: Node Basics

http://nodejs.org/api

You can then specify JavaScript in a simplified Emacs (sorry, no vi) line-editing style.
You can import libraries, create functions—whatever you can do within a static appli‐
cation. The main difference is that each line of code is interpreted instantly:

> const add = (x, y) => { return x + y };
undefined
> add(2, 2);
4

When you’re finished, exit the program with .exit:
> .exit

Discussion
REPL can be started standalone or within another application if you want to set cer‐
tain features. You type in the JavaScript as if you’re typing in the script in a text file.
The main behavioral difference is you might see a result after typing in each line,
such as the undefined that shows up in the runtime REPL.

But you can import modules:
> const fs = require('fs');

And you can access the global objects, which we just did when we used require().

The undefined that shows after typing in some code is the return value for the execu‐
tion of the previous line of code. Setting a new variable and creating a function are
some of the JavaScript that return undefined, which can get quickly annoying. To
eliminate this behavior, as well as make some other modifications, you can use the
REPL.start() function within a small Node application that triggers REPL (but with
the options you specify).

The options you can use are:

prompt
Changes the prompt that shows (default is >)

input

Changes the input readable stream (default is process.stdin, which is the stan‐
dard input)

output

Changes the output writable stream (default is process.stdout, the standard
output)

terminal

Set to true if the stream should be treated like a TTY, and have ANSI/VT100
escape codes written

17.3 Interactively Trying Out Node Code Snippets with REPL | 7

eval

Function used to replace the asynchronous eval() function used to evaluate the
JavaScript

useColors

Set to true to set output colors for the writer function (default is based on the
terminal’s default values)

useGlobal

Set to true to use the global object, rather than running scripts in a separate
context

ignoreUndefined

Set to true to eliminate the undefined return values

writer
The function that returns the formatted result from the evaluated code to the dis‐
play (default is the util.inspect function)

The following is an example application that starts REPL with a new prompt, ignor‐
ing the undefined values, and using colors:

const repl = require('repl');

const options = {
 prompt: '-> ',
 useColors: true,
 ignoreUndefined: true
};

repl.start(options);

The options we want are defined in the options object and then passed as parameters
to repl.start(). When we run the application, REPL is started but we no longer
have to deal with undefined values:

-> const add = (x, y) => { return x + y };
-> add(2, 2);
4

As you can see, this is a cleaner output without all those messy undefined printouts.

Extra: Wait a Second, What Global Object?
Caught that, did you?

One difference between JavaScript in Node and JavaScript in the browser is the global
scoping. Traditionally in a browser, when you create a variable outside a function,
using var, it belongs to the top-level global object, which we know as window:

8 | Chapter 17: Node Basics

var test = 'this is a test';
console.log(window.test); // 'this is a test'

Similarly, when using let or const in the browser, the variables are globally scoped,
though not attached to the window object.

In Node, each module operates within its own separate context, so modules can
declare the same variables, and they won’t conflict if they’re all used in the same
application.

However, there are objects accessible from Node’s global object. We’ve used a few in
previous examples, including console, the Buffer object, and require(). Others
include some very familiar old friends: setTimeout(), clearTimeout(), setIn
terval(), and clearInterval().

17.4 Reading and Writing File Data
Problem
You want to read from or write to a locally stored file.

Solution
Node’s filesystem management functionality is included as part of the Node core, via
the fs module:

const fs = require('fs');

To read a file’s contents, use the readFile() function:
const fs = require('fs');

fs.readFile('main.txt', 'utf8', (err, data) => {
 if (err) throw err;
 console.log(data);
});

To write to a file, use writeFile():
const fs = require('fs');

const buf = "I'm going to write this text to a file";
fs.writeFile('main2.txt', buf, err => {
 if (err) throw err;
 console.log('wrote text to file');
});

The writeFile() function overwrites the existing file. To append text to the file, use
appendText():

17.4 Reading and Writing File Data | 9

const fs = require('fs');

const buf = "\nI'm going to add this text to a file";
fs.appendFile('main.txt', buf, err => {
 if (err) throw err;
 console.log('appended text to file');
});

Discussion
Node’s filesystem support is both comprehensive and simple to use. To read from a
file, use the readFile() function, which supports the following parameters:

• The filename, including the operating system path to the file if it isn’t local to the
application

• An options object, with options for encoding, as demonstrated in the solution,
and flag, which is set to r by default (for reading)

• A callback function with parameters for an error and the read data

In the solution, if I didn’t specify the encoding in my application, Node would have
returned the file contents as a raw buffer. Since I did specify the encoding, the file
content is returned as a string.

The writeFile() and appendFile() functions for writing and appending, respec‐
tively, take parameters similar to readFile():

• The filename and path
• The string or buffer for the data to write to the file
• The options object, with options for encoding (w as default for writeFile() and
a as the default for appendFile()) and mode, with a default value of 438 (0666 in
Octal)

• The callback function, with only one parameter: the error

The options value of mode can be used to set the file’s permissions if the file was cre‐
ated by write or append. By default, the file is created as readable and writable by the
owner, and readable by the group and the world.

I mentioned that the data to write can be either a buffer or a string. A string cannot
handle binary data, so Node provides the buffer, which is capable of dealing with
either strings or binary data. Both can be used in all of the filesystem functions dis‐
cussed in this section, but you’ll need to explicitly convert between the two types if
you want to use them both.

10 | Chapter 17: Node Basics

For example, instead of providing the utf8 encoding option when you use write
File(), you convert the string to a buffer, providing the desired encoding when you
do:

const fs = require('fs');

const str = "I'm going to write this text to a file";
const buf = Buffer.from(str, 'utf8');
fs.writeFile('mainbuf.txt', buf, err => {
 if (err) throw err;
 console.log('wrote text to file');
});

The reverse—that is, to convert the buffer to a string—is just as simple:
const fs = require('fs');

fs.readFile('main.txt', (err, data) => {
 if (err) throw err;
 const str = data.toString();
 console.log(str);
});

The buffer toString() function has three optional parameters: encoding, where to
begin the conversion, and where to end it. By default, the entire buffer is converted
using the utf8 encoding.

The readFile(), writeFile(), and appendFile() functions are asynchronous, mean‐
ing they won’t wait for the operation to finish before proceeding in the code. This is
essential when it comes to notoriously slow operations such as file access. There are
synchronous versions of each: readFileSync(), writeFileSync(), and appendFile
Sync(). I can’t stress enough that you should not use these variations. I only include a
reference to them to be comprehensive.

Advanced
Another way to read or write from a file is to use the open() function in combination
with read() for reading the file contents, or write() for writing to the file. The
advantages to this approach is more finite control of what happens during the pro‐
cess. The disadvantage is the added complexity associated with all of the functions,
including only being able to use a buffer for reading from and writing to the file.

The parameters for open() are:

• Filename and path
• Flag

17.4 Reading and Writing File Data | 11

• Optional mode
• Callback function

The same open() is used with all operations, with the !ag controlling what happens.
There are quite a few flag options, but the ones that interest us the most at this time
are:

r
Opens the file for reading; the file must exist

r+
Opens the file for reading and writing; an exception occurs if the file doesn’t exist

w
Opens the file for writing, truncates the file, or creates it if it doesn’t exist

wx
Opens the file for writing, but fails if the file does exist

w+
Opens the file for reading and writing; creates the file if it doesn’t exist; truncates
the file if it exists

wx+

Similar to w+, but fails if the file exists

a
Opens the file for appending, creates it if it doesn’t exist

ax
Opens the file for appending, fails if the file exists

a+
Opens the file for reading and appending; creates the file if it doesn’t exist

ax+

Similar to a+, but fails if the file exists

The mode is the same one mentioned earlier, a value that sets the sticky and permis‐
sion bits on the file if created, and defaults to 0666. The callback function has two
parameters: an error object, if an error occurs, and a "le descriptor, used by subse‐
quent file operations.

The read() and write() functions share the same basic types of parameters:

• The open() methods callback file descriptor
• The buffer used to either hold data to be written or appended, or read

12 | Chapter 17: Node Basics

• The offset where the input/output (I/O) operation begins
• The buffer length (set by read operation, controls write operation)
• Position in the file where the operation is to take place; null if the position is the

current position

The callback functions for both methods have three arguments: an error, bytes read
(or written), and the buffer.

That’s a lot of parameters and options. The best way to demonstrate how it all works
is to create a complete Node application that opens a brand new file for writing,
writes some text to it, writes some more text to it, and then reads all the text back and
prints it to the console. Since open() is asynchronous, the read and write operations
have to occur within the callback function. Be ready for it in Example 17-2, because
you’re going to get your first taste of a concept known as callback hell.

Example 17-2. Demonstrating open, read, and write

const fs = require('fs');

fs.open('newfile.txt', 'a+', (err, fd) => {
 if (err) {
 throw err;
 } else {
 const buf = Buffer.from('The first string\n');
 fs.write(fd, buf, 0, buf.length, 0, (err, written) => {
 if (err) {
 throw err;
 } else {
 const buf2 = Buffer.from('The second string\n');
 fs.write(fd, buf2, 0, buf2.length, buf.length, (err, written2) => {
 if (err) {
 throw err;
 } else {
 const length = written + written2;
 const buf3 = Buffer.alloc(length);
 fs.read(fd, buf3, 0, length, 0, err => {
 if (err) {
 throw err;
 } else {
 console.log(buf3.toString());
 }
 });
 }
 });
 }
 });
 }
});

17.4 Reading and Writing File Data | 13

Taming callbacks is covered in Chapter 19.

To find the length of the buffers, I used length, which returns the number of bytes
for the buffer. This value doesn’t necessarily match the length of a string in the buffer,
but it does work in this usage.

That many levels of indentation can make your skin crawl, but the example demon‐
strates how open(), read(), and write() work. These combinations of functions are
what’s used within the readFile(), writeFile(), and appendFile() functions to
manage file access. The higher-level functions just simplify the most common file
operations.

See Chapter 19 for a solution to all that nasty indentation.

17.5 Getting Input from the Terminal
Problem
You want to get input from the application user via the terminal.

Solution
Use Node’s Readline module.

To get data from the standard input, use code such as the following:
const readline = require('readline');

const rl = readline.createInterface({
 input: process.stdin,
 output: process.stdout
});

rl.question(">>What's your name? ", answer => {
 console.log(`Hello ${answer}`);
 rl.close();
});

14 | Chapter 17: Node Basics

Discussion
The Readline module provides the ability to get lines of text from a readable stream.
You start by creating an instance of the Readline interface with createInterface()
passing in, at minimum, the readable and writable streams. You need both, because
you’re writing prompts, as well as reading in text. In the solution, the input stream is
process.stdin, the standard input stream, and the output stream is pro
cess.stdout. In other words, input and output are from, and to, the command line.

The solution uses the question() function to post a question, and provides a callback
function to process the response. Within the function, close() is called, which closes
the interface, releasing control of the input and output streams.

You can also create an application that continues to listen to the input, taking some
action on the incoming data, until something signals the application to end. Typically
that something is a letter sequence signaling the person is done, such as the word exit.
This type of application makes use of other Readline functions, such as setPrompt()
to change the prompt given the individual for each line of text; prompt(), which pre‐
pares the input area, including changing the prompt to the one set by setPrompt();
and write(), to write out a prompt. In addition, you’ll also need to use event han‐
dlers to process events, such as line, which listens for each new line of text.

Example 17-3 contains a complete Node application that continues to process input
from the user until they type in exit. Note that the application makes use of pro
cess.exit(). This function cleanly terminates the Node application.

Example 17-3. Access numbers from stdin until the user types in exit

const readline = require('readline');

let sum = 0;

const rl = readline.createInterface({
 input: process.stdin,
 output: process.stdout
});

console.log("Enter numbers, one to a line. Enter 'exit' to quit.");

rl.setPrompt('>> ');
rl.prompt();

rl.on('line', input => {
 const userInput = input.trim();
 if (userInput === 'exit') {
 rl.close();
 return;
 }

17.5 Getting Input from the Terminal | 15

 sum += Number(userInput);
 rl.prompt();
});

// user typed in 'exit'
rl.on('close', () => {
 console.log(`Total is ${sum}`);
 process.exit(0);
});

Running the application with several numbers results in the following output:
Enter numbers, one to a line. Enter 'exit' to quit.
>> 55
>> 209
>> 23.44
>> 0
>> 1
>> 6
>> exit
Total is 294.44

I used console.log() rather than the Readline interface write() to write the
prompt, followed by a new line, and to differentiate the output from the input.

See Also
Chapter 19 covers passing and reading command-line arguments in Node
applications.

17.6 Getting the Path to the Current Script
Problem
Your application needs to read the path of the script that is being executed.

Solution
Use the __dirname or __filename variables, which are in the scope of the module
executing it:

// logs the directory of the currently executed file
// ex: /Users/Adam/Projects/js-cookbook/node
console.log(__dirname);

// logs the directory and filename of the currently executed file
// ex: /Users/Adam/Projects/js-cookbook/node/example.js
console.log(__filename);

16 | Chapter 17: Node Basics

Discussion
The __dirname or __filename variables appear to be in the global scope, but they
actually exist in the scope of the module itself. Let’s assume that you have a project
with the following directory structure:

example-app
| index.js
├───dir1
| | example.js
| └───dir3
| | nested.js

If you were to read the __dirname in the index.js file, it would be the path to the proj‐
ect’s root directory. However, reading the __dirname in from a script in the nested.js
file would read the path to the dir3 directory. This allows you to read the path of a
module as it’s executed, rather than being limited to the parent directory itself.

A useful example of __dirname in action is when creating a new file or directory
within the current directory. In the following example, the script creates a new subdi‐
rectory named cache within the current file’s directory:

const fs = require('fs');
const path = require('path');
const newDirectoryPath = path.join(__dirname, '/cache');

fs.mkdirSync(newDirectoryPath);

17.7 Working with Node Timers and Understanding the
Node Event Loop
Problem
You need to use a timer in a Node application, but you’re not sure which of Node’s
three timers to use, or how accurate they are.

Solution
If your timer doesn’t have to be precise, you can use setTimeout() to create a single
timer event, or setInterval() if you want a reccurring timer:

setTimeout(() => {}, 3000);

setInterval(() => {}, 3000);

Both function timers can be canceled:
const timer1 = setTimeout(() => {}, 3000);
clearTimeout(timer1);

17.7 Working with Node Timers and Understanding the Node Event Loop | 17

const timer2 = setInterval(() => {}, 3000);
clearInterval(timer2);

However, if you need more finite control of your timer, and immediate results, you
might want to use setImmediate(). You don’t specify a delay for it, as you want the
callback to be invoked immediately after all I/O callbacks are processed but before any
setTimeout() or setInterval() callbacks:

setImmediate(() => {});

It, too, can be cleared, with clearImmediate().

Discussion
Node, being JavaScript based, runs on a single thread. It is synchronous. However,
input/output (I/O) and other native API access either runs asynchronously or on a
separate thread. Node’s approach to managing this timing disconnect is the event
loop.

In your code, when you perform an I/O operation, such as writing a chunk of text to
a file, you specify a callback function to do any post-write activity. Once you’ve done
so, the rest of your application code is processed. It doesn’t wait for the file write to
finish. When the file write has finished, an event signaling the fact is returned to
Node, and pushed on to a queue, waiting for processing. Node processes this event
queue, and when it gets to the event signaled by the completed file write, it matches
the event to the callback, and the callback is processed.

As a comparison, think of going into a deli and ordering lunch. You wait in line to
place your order, and are given an order number. You sit down and read the paper, or
check your Twitter account while you wait. In the meantime, the lunch orders go into
another queue for deli workers to process the orders. But each lunch request isn’t
always finished in the order received. Some lunch orders may take longer. They may
need to bake or grill for a longer time. So the deli worker processes your order by
preparing your lunch item and then placing it in an oven, setting a timer for when it’s
finished, and goes on to other tasks.

When the timer pings, the deli worker quickly finishes their current task, and pulls
your lunch order from the oven. You’re then notified that your lunch is ready for
pickup by your order number being called out. If several time-consuming lunch
items are being processed at the same time, the deli worker processes them as the
timer for each item pings, in order.

All Node processes fit the pattern of the deli order queue: first in, first to be sent to
the deli (thread) workers. However, certain operations, such as I/O, are like those
lunch orders that need extra time to bake in an oven or grill, but don’t require the deli
worker to stop any other effort and wait for the baking and grilling. The oven or grill

18 | Chapter 17: Node Basics

timers are equivalent to the messages that appear in the Node event loop, triggering a
final action based on the requested operation.

You now have a working blend of synchronous and asynchronous processes. But
what happens with a timer?

Both setTimeout() and setInterval() fire after the given delay, but what happens is
a message to this effect is added to the event loop, to be processed in turn. So if the
event loop is particularly cluttered, there is a delay before the the timer functions’
callbacks are called:

It is important to note that your callback will probably not be called in exactly (delay)
milliseconds. Node.js makes no guarantees about the exact timing of when the callback
will fire, nor of the ordering things will fire in. The callback will be called as close as
possible to the time specified.

—Node Timers documentation
For the most part, whatever delay happens is beyond the kin of our human senses,
but it can result in animations that don’t seem to run smoothly. It can also add an odd
effect to other applications.

In Example 17-4, I created a scrolling timeline in SVG, with data fed to the client via
WebSockets. To emulate real-world data, I used a three-second timer and randomly
generated a number to act as a data value. In the server code, I used setInterval(),
because the timer is reccurring:

Example 17-4. Scrolling timeline example

const app = require('http');
const fs = require('fs');
const ws = require('nodejs-websocket');

let server;

// serve static page
const handler = (req, res) => {
 fs.readFile(`${__dirname}/drawline.html`, (err, data) => {
 if (err) {
 res.writeHead(500);
 return res.end('Error loading drawline.html');
 }
 res.writeHead(200);
 res.end(data);
 return data;
 });
};

/// start the webserver
// connections on Port 8124 will be handled by the handler
app.listen(8124);

17.7 Working with Node Timers and Understanding the Node Event Loop | 19

app.createServer(handler);

// data timer
const startTimer = () => {
 setInterval(() => {
 const newval = Math.floor(Math.random() * 100) + 1;
 if (server.connections.length > 0) {
 console.log(`sending ${newval}`);
 const counter = { counter: newval };
 server.connections.forEach(conn => {
 conn.sendText(JSON.stringify(counter), () => {
 console.log('conn sent');
 });
 });
 }
 }, 3000);
};

// Create a websocket connection handler on a different port
server = ws
 .createServer(conn => {
 console.log('connected');
 conn.on('close', () => {
 console.log('Connection closed');
 });
 })
 .listen(8001, () => {
 startTimer();
 });

I included console.log() to call in the code so you can see the timer event in com‐
parison to the communication responses. When the setInterval() function is
called, it’s pushed into the process. When its callback is processed, the WebSocket
communications are also pushed into the queue.

The solution uses setInterval(), one of Node’s three different types of timers. The
setInterval() function has the same format as the one we use in the browser. You
specify a callback for the first function, provide a delay time (in milliseconds), and
any potential arguments. The timer is going to fire in three seconds, but we already
know that the callback for the timer may not be immediately processed.

The same applies to the callbacks passed in the WebSocket sendText() calls. These
are based on Node’s Net (or TLS, if secure) sockets, and as the socket.write()
(what’s used for sendText()) documentation notes:

The optional callback parameter will be executed when the data is finally written out—
this may not be immediately.

—Node documentation

20 | Chapter 17: Node Basics

If you set the timer to invoke immediately (giving zero as the delay value), you’ll see
that the data sent message is interspersed with the communication sent message
(before the browser client freezes up, overwhelmed by the socket communications—
you don’t want to use a zero value in the application again).

However, the timelines for all the clients remain the same because the communica‐
tions are sent within the timer’s callback function, synchronously, so the data is the
same for all of the communications—it’s just the callbacks that are handled, seem‐
ingly out of order.

Earlier I mentioned using setInterval() with a delay of zero. In actuality, it isn’t
exactly zero—Node follows the HTML5 specification that browsers adhere to, and
“clamps” the timer interval to a minimum value of four milliseconds. While this may
seem to be too small of an amount to cause a problem, when it comes to animations
and time-critical processes, the time delay can impact the overall appearance and/or
function.

To bypass the constraints, Node developers utilize Node’s process.nextTick()
instead. The callback associated with process.nextTick() is processed on the next
event loop go around, usually before any I/O callbacks (though there are constraints,
which I’ll get to in a minute). No more pesky four-millisecond throttling. But then,
what happens if there’s an enormous number of recursively called process.next
Tick() calls?

To return to our deli analogy, during a busy lunch hour, workers can be overrun with
orders and so caught up in trying to process new orders that they don’t respond in a
timely manner to the oven and grill pings. Things burn when this happens. If you’ve
ever been to a well-run deli, you’ll notice the counter person taking the orders will
assess the kitchen before taking the order, tossing in some slight delay, or even taking
on some of the kitchen duties, letting the people wait just a tiny bit longer in the
order queue.

The same happens with Node. If process.nextTick() were allowed to be the spoiled
child, always getting its way, I/O operations would get starved out. Node uses another
value, process.maxTickDepth, with a default value of 1000 to constrain the number
of process.next() callbacks that are processed before the I/O callbacks are allowed
to play. It’s the counter person in the deli.

In more recent releases of Node, the setImmediate() function was added. This func‐
tion attempts to resolve all of the issues associated with the timing operations and
create a happy medium that should work for most folks. When setImmediate() is
called, its callback is added after the I/O callbacks, but before the setTimeout() and
setInterval() callbacks. We don’t have the four-millisecond tax for the traditional
timers, but we also don’t have the brat that is process.nextTick().

17.7 Working with Node Timers and Understanding the Node Event Loop | 21

To return one last time to the deli analogy, setImmediate() is a customer in the order
queue who sees that the deli workers are overwhelmed with pinging ovens, and
politely states they’ll wait to give their order.

However, you do not want to use setImmediate() in the scrolling
timeline example, as it will freeze your browser up faster than you
can blink.

22 | Chapter 17: Node Basics

CHAPTER 18

Node Modules

One of the great aspects of writing Node.js applications is the built-in modularity the
environment provides. It’s simple to download and install any number of Node mod‐
ules, and using them is equally simple: just include a single require() statement
naming the module, and you’re off and running.

The ease with which the modules can be incorporated is one of the benefits of Java‐
Script modularization. Modularizing ensures that external functionality is created in
such a way that it isn’t dependent on other external functionality, a concept known as
loose coupling. This means I can use a Foo module, without having to include a Bar
module, because Foo is tightly dependent on having Bar included.

JavaScript modularization is both a discipline and a contract. The discipline comes in
having to follow certain mandated criteria in order for external code to participate in
the module system. The contract is between you, me, and other JavaScript developers:
we’re following an agreed-on path when we produce (or consume) external function‐
ality in a module system, and we all have expectations based on the module system.

One major dependency on virtually all aspects of application and
library management and publication is the use of Git, a source con‐
trol system, and GitHub, an extremely popular Git endpoint. How
Git works and using Git with GitHub are beyond the scope of this
book. I recommend the Git Pocket Guide by Richard Silverman
(O’Reilly) to get more familiar with Git, and GitHub’s own docu‐
mentation for more on using this service.

23

http://shop.oreilly.com/product/0636920024972.do
https://github.com
https://github.com

18.1 Searching for a Speci!c Node Module via npm
Problem
You’re creating a Node application and want to use existing modules, but you don’t
know how to discover them.

Solution
Chapter 1 explains how to install packages with npm, Node’s popular package man‐
ager (and the glue that holds the Node universe together). But you haven’t yet consid‐
ered how to "nd the useful packages that you need in npm’s sprawling registry.

In most cases, you’ll discover modules via recommendations from your friends and
codevelopers, but sometimes you need something new. You can search for new mod‐
ules directly at the npm website. You can also use the npm command-line interface
directly to search for a module. For instance, if you’re interested in modules that do
something with PDFs, run the following search at the command line:

$ npm search pdf

Discussion
The npm website provides more than just documentation for using npm; it also pro‐
vides an interface for searching for modules. If you access each module’s page at npm,
you can see how popular the module is, what other modules are dependent on it, the
license, and other relevant information.

However, you can also search for modules, directly, using npm. The process can take
a fair amount of time and when it finishes, you’re likely to get a huge number of mod‐
ules in return, especially with a broader topic such as modules that work with PDFs.

You can refine the results by listing multiple terms:
$ npm search PDF generation

This query returns a much smaller list of modules, specific to PDF generation.

Once you do find a module that sounds interesting, you can get detailed information
about it with:

$ npm view electron

You’ll get useful information from the package.json of the module, which can tell you
what it’s dependent on, who wrote it, and when it was created. We still recommend
checking out the module’s npm website page and GitHub repository page directly.
There you’ll be able to determine if the module is being actively maintained, get a
sense of how popular the module is, review open issues, and look at the source code.

24 | Chapter 18: Node Modules

https://www.npmjs.org

18.2 Converting Your Library into a Node Module
Problem
You want to use one of your libraries in Node.

Solution
Convert the library into a Node module. In Node, each file is treated as a module. For
example, if the library is a file containing a function stored at /lib/hello.js:

const hello = val => {
 return console.log(`Hello ${val}`);
};

You can convert it to work as a Node module with the exports keyword:
const hello = val => {
 return console.log(`Hello ${val}`);
};

module.exports = hello;

Alternately, can also export the function directly:
module.exports = val => {
 return console.log(`Hello ${val}`);
};

You can then use the module in your application:
var hello = require('./lib/hello.js');

// logs 'Hello world'
hello('world');

Discussion
Node’s default module system is based on CommonJS, which uses three constructs:
exports to define what’s exported from the library, require() to include the module
in the application, and module, which includes information about the module but also
can be used to export a function directly.

If your library returns an object with several functions and data objects, you can
assign each to the comparably named property on module.exports, or you could
return an object:

const greeting = {
 hello: val => {
 return console.log(`Hello ${val}`);
 },

18.2 Converting Your Library into a Node Module | 25

 ciao: val => {
 return console.log(`Ciao ${val}`);
 }
};

module.exports = greeting;

or:
const hello = val => {
 return console.log(`Hello ${val}`);
};

const ciao = val => {
 return console.log(`Ciao ${val}`);
};

module.exports = { hello, ciao };

And then access the object properties directly:
const greeting = require('./lib/greeting.js')

// logs 'Hello world'
greeting.hello('world');
// logs 'Ciao mondo'
greeting.ciao('mondo');

Because the module isn’t installed using npm, and just resides in the directory where
the application resides, it’s accessed by the file location and name, not just the name.

See Also
In Recipe 18.3, we cover how to make sure your library code works in both Com‐
monJS and ECMAScript module environments.

In Recipe 18.4, we cover how to create an standalone module.

18.3 Taking Your Code Across Module Environments
Problem
You’ve written a library that you’d like to share with others, but folks are using a vari‐
ety of Node versions with both CommonJS and ECMAScript modules. How can you
ensure your library works in all of the various environments?

Solution
Use CommonJS modules with an ECMAScript module wrapper.

First, write the library as a CommonJS module, saved with the .cjs file extension:

26 | Chapter 18: Node Modules

const bbarray = {
 concatArray: (str, array) => {
 return array.map(element => {
 return `${str} ${element}`;
 });
 },
 splitArray: (str, array) => {
 return array.map(element => {
 return element.substring(str.length + 1);
 });
 }
};

module.exports = bbarray;
exports.concatArray = bbarray.concatArray;
exports.splitArray = bbarray.splitArray;

Followed by an ECMAScript wrapper module, which uses the .mjs file extension:
import bbarray from './index.cjs';

export const { concatArray, splitArray } = bbarray;
export default bbarray;

And a package.json file, which includes the type, main, and exports fields:
"type": "module",
"main": "./index.cjs",
"exports": {
 ".": "./index.cjs",
 "./module": "./wrapper.mjs"
},

Users of our module, using CommonJS syntax, can use the require syntax to import
the module:

const bbarray = require('bbarray');

bbarray.concatArray('is', ['test', 'three']);
bbarray.splitArray('is', ['is test', 'is three']);

or:
const { concatArray, splitArray } = require('bbarray');

concatArray('is', ['test', 'three']);
splitArray('is', ['is test', 'is three']);

While those using ECMAScript modules can specify the module version of the library
to use the ES import syntax:

import bbarray from 'bbarray/module';

bbarray.concatArray('is', ['test', 'three']);
bbarray.splitArray('is', ['is test', 'is three']);

18.3 Taking Your Code Across Module Environments | 27

or:
import { concatArray, splitArray } from 'bbarray/module';

concatArray('is', ['test', 'three']);
splitArray('is', ['is test', 'is three']);

At the time of writing, it is possible to avoid the /module naming
convention for ECMAScript modules using the --experimental-
conditional-exports flag. However, due to the current experi‐
mental nature and the potential of future changes in the syntax, we
currently recommend against it. In future versions of Node, this
will likely become the standard. You can read more about this
approach in the Node documentation.

Discussion
CommonJS modules have been the standard in Node since the beginning, and tools
such as Browserify brought this syntax out of the Node ecosystem, allowing develop‐
ers to use Node style modules in the browser. The ECMAScript 2015 (also known as
ES6) standard introduced a native JavaScript module syntax, which was introduced in
Node 8.5.0 and could be used behind an --experimental-module flag. Beginning
with Node 13.2.0, Node ships with native support for ECMAScript modules.

A common pattern is to write a module using either the CommonJS or ECMAScript
module syntax and use a compile tool to ship both as either separate module entry
points or exported paths. However, this runs the risk of a module being loaded twice
if it is loaded directly via one syntax by the application and either loaded directly or
by a dependency using the other syntax.

In package.json there are three key fields:
"type": "module",
"main": "./index.cjs",
"exports": {
 ".": "./index.cjs",
 "./module": "./wrapper.mjs"
},

"type"

Specifies that this is a module, meaning that this library is using the ECMAScript
module syntax. For libraries that exclusively use CommonJS, the "type" would
be "commonjs".

"main"
Specifies the main entry point of the application, for which we will point to the
CommonJS file.

28 | Chapter 18: Node Modules

https://oreil.ly/Xzkid

"exports"
Defines the exported paths of our modules. Through this consumers of the
default package will receive the CommonJS module directly, while those using
package/module will import the file from the ECMAScript module wrapper.

If we wish to avoid using the .cjs and .mjs file extensions, we may do so:
"type": "module",
"main": "./index.js",
"exports": {
 ".": "./index.js",
 "./module": "./wrapper.js"
},

See Also
In Recipe 18.5, we cover how to make sure your library code works across multiple
module environments in both Node and the browser by using Webpack as a code
bundler.

18.4 Creating an Installable Node Module
Problem
You’ve either created a Node module from scratch, or converted an existing library to
one that will work in the browser or in Node. Now, you want to know how to modify
it into a module that can be installed using npm.

Solution
Once you’ve created your Node module and any supporting functionality (including
module tests), you can package the entire directory. The key to packaging and pub‐
lishing the Node module is creating a package.json file that describes the module, any
dependencies, the directory structure, what to ignore, and so on. You can generate a
package.json file by running the npm init command in the root of the project’s direc‐
tory and following the prompts.

The following is a relatively basic package.json file:
{
 "name": "bbArray",
 "version": "0.1.0",
 "description": "A description of what my module is about",
 "main": "./lib/bbArray",
 "author": {
 "name": "Shelley Powers"
 },
 "keywords": [

18.4 Creating an Installable Node Module | 29

 "array",
 "utility"
],
 "repository": {
 "type": "git",
 "url": "https://github.com/accountname/bbarray.git"
 },
 "engines" : {
 "node" : ">=0.10.0"
 },
 "bugs": {
 "url": "https://github.com/accountname/bbarray/issues"
 },
 "licenses": [
 {
 "type": "MIT",
 "url": "https://github.com/accountname/bbarray/raw/master/LICENSE"
 }
],
 "dependencies": {
 "some-module": "~0.1.0"
 },
 "directories":{
 "doc":"./doc",
 "man":"./man",
 "lib":"./lib",
 "bin":"./bin"
 },
 "scripts": {
 "test": "nodeunit test/test-bbarray.js"
 }
 }

Once you’ve created package.json, package all the source directories and the pack‐
age.json file as a gzipped tarball. Then install the package locally, or install it in npm
for public access.

Discussion
The package.json file is key to packaging up a Node module for local installation or
uploading to npm for management. At a minimum, it requires a name and a version.
The other fields given in the solution are:

description
A description of what the module is and does

main
Entry file for the module

author
Author(s) of the module

30 | Chapter 18: Node Modules

keywords
List of keywords that can help others find the module

repository
Place where the code lives, typically GitHub

engines
Node versions you know your module works with

bugs
Where to file bugs

licenses
License for your module

dependencies
A list of dependencies required by the module

directories
A hash describing the directory structure for your module

scripts
A hash of object commands that are run during the module life cycle

There are a host of other options that are described at the npm website. You can also
use a tool to help you fill in many of these fields. Typing the following at the com‐
mand line runs the tool that asks questions and then generates a basic package.json
file:

$ npm init

Once you have your source set up and your package.json file, you can test whether
everything works by running the following command in the top-level directory of
your module:

$ npm install . -g

If you have no errors, then you can package the file as a gzipped tarball. At this point,
if you want to publish the module, you’ll first need to add yourself as a user in the
npm registry:

$ npm add-user

To publish the Node module to the npm registry, use the following in the root direc‐
tory of the module, specifying a URL to the tarball, a filename for the tarball, or a
path:

$ npm publish ./

If you have development dependencies for your module, such as using a testing
framework like Jest, one excellent shortcut to ensure these are added to your

18.4 Creating an Installable Node Module | 31

https://oreil.ly/iXynV

package.json file is to use the following, in the same directory as the package.json file,
when you’re installing the dependent module:

$ npm install jest --save-dev

Not only does this install Jest (discussed later, in Recipe 2.6), this command also
updates your package.json file with the following command:

 "devDependencies": {
 "jest": "^24.9.0"
 }

You can also use this same type of option to add a module to dependencies in
package.json. The following:

$ npm install express --save

adds the following to the package.json file:
"dependencies": {
 "express": "^3.4.11"
 }

If the module is no longer needed and shouldn’t be listed in package.json, remove it
from the devDependencies with:

$ npm remove jest

And remove a module to dependencies with:
$ npm remove express

If the module is the last in either dependencies or devDependencies, the property
isn’t removed. It’s just set to an empty value:

"dependencies": {}

npm provides a decent developer guide for creating and installing a
Node module. You should consider the use of an .npmignore
or .gitignore file for keeping stuff out of your module. And though
this is beyond the scope of the book, you should also become famil‐
iar with Git and GitHub, and make use of it for your applications/
modules.

Extra: The README File and Markdown Syntax
When you package your module or library for reuse and upload it to a source reposi‐
tory such as GitHub, you’ll need to provide how-to information about installing the
module/library and basic information about how to use it. For this, you need a
README file.

32 | Chapter 18: Node Modules

https://oreil.ly/ifa4e
https://oreil.ly/ifa4e

You’ve likely seen files named README.md with applications and Node modules.
They’re text-based with some odd, unobtrusive markup that you’re not sure is useful,
until you see it in a site like GitHub, where the README file provides all of the
project page installation and usage information. The markup translates into HTML,
making for readable web-based help.

The content for the README is marked up with annotation known as Markdown.
The popular website Daring Fireball calls Markdown easy to read and write, but
“Readability, however, is emphasized above all else.” Unlike with HTML, the Mark‐
down markup doesn’t get in the way of reading the text.

Daring Fireball also provides an overview of generic Markdown,
but if you’re working with GitHub files, you might also want to
check out GitHub’s Flavored Markdown.

Here is a sample REAMDE.md file:
Project Title

Provide a brief description of the project and what it does.
If the project has a UI, include a screenshot as well.

If more comprehensive documentation exists, link to it here.

Features

Describe the core features of the project (what does it do?)
in the form of a bulleted list:

- Feature #1
- Feature #2
- Feature #3

Getting Started

Provide installation instructions, general usage guidance, API examples,
and build and deployment information. Assume as little prior knowledge
as possible, describing everything in clear and coherent steps.

Installation/Dependencies

How does a user get up and running with your project? What dependencies
does the project have? Aim to describe these in clear and simple steps.
Provide external links.

Usage

Provide examples of how the project may be used. For large projects with

18.4 Creating an Installable Node Module | 33

https://oreil.ly/qkKRT
https://help.github.com/en/github/writing-on-github

external documentation, provide a few examples and link to the full docs here.

Build/Deployment

If the user will be building or deploying the project, add any useful guidance.

Getting Help

What should users do and expect when they encounter bugs or get stuck using
your project? Set expectations for support, link to the issue tracker and
roadmap, if applicable.

Where should users go if they have a question? (Stack Overflow, Gitter, IRC,
mailing list, etc.)

If desired, you may also provide links to core contributor email addresses.

Contributing Guidelines

Include instructions for setting up the development environment, code standards,
running tests, and submitting pull requests. It may be useful to link to a
separate CONTRIBUTING.md file. See this example from the Hoodie project:
https://github.com/hoodiehq/hoodie/blob/master/CONTRIBUTING.md

Code of Conduct

Provide a link to the Code of Conduct for your project. I recommend using the
Contributor Covenant: http://contributor-covenant.org/

License

Include a license for your project. If you need help choosing a license,
use this guide: https://choosealicense.com

Most popular text editors include Markdown syntax highlighting and previewing
capabilities. There are also desktop Markdown editors available for all platforms. I
can also use a CLI tool, like Pandoc, to covert the README.md file into readable
HTML:

$ pandoc README.md -o readme.html

Figure 18-1 displays the generated content. It’s not fancy, but it is eminently readable.

34 | Chapter 18: Node Modules

https://oreil.ly/Cc4GX

Figure 18-1. Generated HTML from README.md text and Markdown annotation

When you host your source code at a site such as GitHub, GitHub uses the
README.md file to generate the cover page for the repository.

18.5 Writing Multiplatform Libraries
Problem
You’ve created a library that is useful both in the browser and in Node.js, and would
like to make it available in both environments.

Solution
Use a bundling tool, such as Webpack, to bundle your library so that it works as an
ES2015 module, CommonJS module, and AMD module, and can be loaded as a
script tag in the browser.

In Webpack’s webpack.con"g.js file, include the library and libraryTarget fields,
which signify that the module should be bundled as a library and target multiple
environments:

18.5 Writing Multiplatform Libraries | 35

const path = require('path');

module.exports = {
 entry: './src/index.js',
 output: {
 path: path.resolve(__dirname, 'dist'),
 filename: 'my-library.js',
 library: 'myLibrary',
 libraryTarget: 'umd',
 globalObject: 'this'
 },
};

The library field specifies a name for the library that will be used in ECMAScript,
CommonJS, and AMD module environments. The libraryTarget field allows you to
specify how the module will be exposed. The default is var, which will expose a vari‐
able. Specifying umd will utilize the JavaScript Universal Module Definition (UMD),
enabling the ability for multiple module styles to consume the library. To make the
UMD build available in both browser and Node.js environments, you will need to set
the output.globalObject option to this.

For more details on using Webpack to bundle code, see Chapter 1.

Discussion
In the example, I’ve created a simple math library. Currently, the only function is one
called squareIt, which accepts a number as a parameter and returns the value of that
number multiplied by itself. This is at src/index.js:

export function squareIt(num) {
 return num * num;
};

The package.json file contains Webpack and the Webpack command-line interface
(CLI) as development dependencies. It also points the main distribution at the
bundled version of the library, which Webpack will output to the dist folder. I’ve also
added a build script that will run the Webpack bundler, aptly named build. This will
allow me to generate the bundle by typing npm run build (or yarn run build if
using Yarn).

{
 "name": "my-library",
 "version": "1.0.0",
 "description": "An example library bundled by Webpack",
 "main": "dist/my-library.js",

36 | Chapter 18: Node Modules

https://oreil.ly/VSpd0

 "scripts": {
 "build": "webpack"
 },
 "keywords": ["example"],
 "author": "Adam Scott <adam@jseverywhere.io>",
 "license": "MIT",
 "devDependencies": {
 "webpack": "4.44.1",
 "webpack-cli": "3.3.12"
 }
}

Finally, my project contains a webpack.con"g.js, as described in the recipe:
const path = require('path');

module.exports = {
 entry: './src/index.js',
 output: {
 path: path.resolve(__dirname, 'dist'),
 filename: 'my-library.js',
 library: 'myLibrary',
 libraryTarget: 'umd',
 globalObject: 'this'
 },
};

With this setup, the command npm run build will bundle the library and place it
within the dist directory of the project. This bundled file is what consumers of the
library will use.

To test the package locally, before publishing it to npm, run npm
link from the root of the project directory. Then in a separate
project, where you’d like to use the module, type npm link
<library name>. Doing so will create a symbolic link to the pack‐
age, as though it is globally installed.

Publishing the library
Once your library is complete, you will most likely want to publish it to npm for dis‐
tribution. Make sure that your project is version controlled with Git and has been
pushed to a public remote repository (such as GitHub or GitLab). From the root of
your project’s directory:

$ git init
$ git remote add origin git://git-remote-url
$ npm publish

Once published to a remote Git repository and the npm registry, the library can be
consumed by running npm install, downloading or cloning the Git repository, or

18.5 Writing Multiplatform Libraries | 37

directly referencing the library in a web page using https://unpkg.com/<library-
name>. The library can be consumed across the multiple JavaScript library formats.

As an ES 2015 module:
import * as myLibrary from 'my-library';

myLibrary.squareIt(4);

As a CommonJS module:
const myLibrary = require('my-library');

myLibrary.squareIt(4);

As an AMD module:
require(['myLibrary'], function (myLibrary) {
 myLibrary.squareIt(4);
});

And using a script tag on a web page:
<!doctype html>
<html>
 <script src="https://unpkg.com/my-library"></script>
 <script>
 myLibrary.squareIt(4);
 </script>
</html>

Handling library dependencies
Oftentimes a library may contain subdependencies. With our current setup, all
dependencies will be packaged and bundled with the library itself. To limit the out‐
putted bundle and to ensure that library consumers are not installing multiple instan‐
ces of a subdependency, it may be best to treat them as a “peer dependency,” which
must also be installed or referenced on its own. To do so, add an externals property
to your webpack.con"g.js. In the instance below, moment is being used as a peer
dependency:

const path = require('path');

module.exports = {
 entry: './src/index.js',
 output: {
 path: path.resolve(__dirname, 'dist'),
 filename: 'my-library.js',
 library: 'myLibrary',
 libraryTarget: 'umd',
 globalObject: 'this'
 },
 externals: {

38 | Chapter 18: Node Modules

 moment: {
 commonjs: 'moment',
 commonjs2: 'moment',
 amd: 'moment',
 root: 'moment',
 }
 }
};

With this configuration, moment will be treated as a global variable by our library.

18.6 Unit Testing Your Modules
Problem
You want to make sure your module is functioning correctly and ready to be used by
others.

Solution
Add unit tests as part of your production process.

Given the following module, named bbarray, and created in a file named index.js:
const util = require('util');

const bbarray = {
 concatArray: (str, array) => {
 if (!util.isArray(array) || array.length === 0) {
 return -1;
 }

 if (typeof str !== 'string') {
 return -1;
 }

 return array.map(element => {
 return `${str} ${element}`;
 });
 },
 splitArray: (str, array) => {
 if (!util.isArray(array) || array.length === 0) {
 return -1;
 }

 if (typeof str !== 'string') {
 return -1;
 }

 return array.map(element => {
 return element.substring(str.length + 1);

18.6 Unit Testing Your Modules | 39

 });
 }
};

module.exports = bbarray;

Using Jest, a JavaScript testing framework, the following unit test (created as index.js
and located in the project’s test subdirectory) should result in the successful pass of
six tests:

const bbarray = require('../index.js');

describe('concatArray()', () => {
 test('should return -1 when not using array', () => {
 expect(bbarray.concatArray(9, 'str')).toBe(-1);
 });

 test('should return -1 when not using string', () => {
 expect(bbarray.concatArray(9, ['test', 'two'])).toBe(-1);
 });

 test('should return an array with proper args', () => {
 expect(bbarray.concatArray('is', ['test', 'three'])).toStrictEqual([
 'is test',
 'is three'
]);
 });
});

describe('splitArray()', () => {
 test('should return -1 when not using array', () => {
 expect(bbarray.splitArray(9, 'str')).toBe(-1);
 });

 test('should return -1 when not using string', () => {
 expect(bbarray.splitArray(9, ['test', 'two'])).toBe(-1);
 });

 test('should return an array with proper args', () => {
 expect(bbarray.splitArray('is', ['is test', 'is three'])).toStrictEqual([
 'test',
 'three'
]);
 });
});

The result of the test is shown in Figure 18-2, run using npm test.

40 | Chapter 18: Node Modules

https://jestjs.io

Figure 18-2. Running unit tests based on Jest

Discussion
A unit test is a way that developers test their code to ensure it meets the specifications.
It involves testing functional behavior, and seeing what happens when you send bad
arguments—or no arguments at all. It’s called unit testing because it’s used with indi‐
vidual units of code, such as testing one module in a Node application, as compared
to testing the entire Node application. It becomes one part of integration testing,
where all the pieces are plugged together, before going to user acceptance testing: test‐
ing to ensure that the application does what users expect it to do (and that they gener‐
ally don’t hate it when they use it).

Unit testing is one of those development tasks that may seem like a pain when you
first start, but can soon become second nature. A good goal is to develop both tests
and code in parallel to one another. Many developers even practice test-driven devel‐
opment, where unit tests are written prior to the code itself.

In the solution, we use Jest, a sophisticated testing framework. The module is simple,
so we’re not using some of the more complex Jest testing mechanisms. However, this
provides an example of the building blocks of writing unit tests.

To install Jest, use the following:
$ npm install jest --save-dev

I’m using the --save-dev flag, because I’m installing Jest into the module’s develop‐
ment dependencies. In addition, I modify the module’s package.json file to add the
following section:

18.6 Unit Testing Your Modules | 41

 "scripts": {
 "test": "jest"
 },

The test script is saved as index.js in the tests subdirectory under the project. Jest
automatically looks for files in a tests directory or files following the "lename.test.js
naming pattern. The following command runs the test:

$ npm test

The Jest unit tests makes use of expect matchers to test for the returned values.

42 | Chapter 18: Node Modules

https://oreil.ly/E7RnY

CHAPTER 21

Building Web Applications with Express

Express is a lightweight web framework that has been the long-standing leader in web
application development in Node. Similar to Ruby’s Sinatra and Python’s Flask, the
Express framework by itself is very minimal, but can be extended to build any type of
web application. Express is also the backbone of batteries included in web application
frameworks, such as Keystone.js, Sails, and Vulcan.js. If you are doing web applica‐
tion development in Node, you are likely to encounter Express. This chapter focuses
on a handful of basic recipes for working with Express, which can be extended to
build out all sorts of web applications.

21.1 Using Express to Respond to Requests
Problem
Your Node application needs to respond to HTTP requests.

Solution
Install the Express package:

$ npm install express

To set up Express, we require the module, call the module, and specify a port for con‐
nections in a file named index.js:

const express = require('express');

const app = express();
const port = process.env.PORT || '3000';

app.listen(port, () => console.log(`Listening on port ${port}`));

43

https://expressjs.com
https://keystonejs.com
https://sailsjs.com
http://vulcanjs.org

To respond to a request, specify a route and the response using Express’s .get
method:

const express = require('express');

const app = express();
const port = process.env.PORT || '3000';

app.get('/', (req, res) => res.send('Hello World'));

app.listen(port, () => console.log(`Listening on port ${port}`));

To serve static files, we can specify a directory with the express.static middleware
const express = require('express');

const app = express();
const port = process.env.PORT || '3000';

// middleware for static files
// will serve static files from the 'files' directory
app.use(express.static('files'));

app.listen(port, () => console.log(`Listening on port ${port}`));

To respond with HTML generated from a template, first install the templating engine:
$ npm install pug --save

Next, in the index.js file, set the view engine and specify the route that will respond
with the template content:

app.set('view engine', 'pug')

app.get('/template', (req, res) => {
 res.render('template');
});

And then create a template file in the views subdirectory of the project with a new file.
The template filename should match the name specified in res.render. In views/
template.pug:

html
 head
 title="Using Express"
 body
 h1="Hello World"

Now requests to http://localhost:3000/template will return the template content as
HTML.

44 | Chapter 21: Building Web Applications with Express

Discussion
Express is a minimalist, but highly configurable framework for responding to HTTP
requests and building out web applications. In the example, we set the port to pro
cess.env.PORT or port 3000. In development, we can then specify a new port using
an environment variable, such as:

$ PORT=7777 node index.js

or by using a .env file paired with the dotenv Node module. When deploying the
application, the application hosting platform may require a specific port number or
allow us to configure the port number ourselves.

With the Express get method, the application receives a request to a specific URI and
then responds. In our example, when the application receives a request to the root
URI (/), we respond with the text “Hello World”:

app.get('/', (req, res) => res.send('Hello World'));

These responses can also be HTML, templates rendered to HTML, static files, and
formatted data (such as JSON or XML).

Due to its minimal nature, Express itself contains minimal functionality, but can be
extended using middleware. In Express, middleware functions have access to the
request and response objects. Application-level middleware is bound to an instance
of the app object through app.use(MIDDLEWARE). In the example, we’re making use of
the built-in static files middleware:

app.use(express.static('files'));

Middleware packages can be used to extend Express’s functionality in many ways.
The helmet middleware package can be used to improve the Express security
defaults:

const express = require('express');
const helmet = require('helmet');

const app = express();

app.use(helmet());

Templating engines simplify the process of writing HTML and allow you to pass data
from your application to the page.

Here I am passing the data from the userData object to the template found at views/
user.pug, which will be accessible at the /user route:

// a user object of data to send to the template
const userData = {
 name: 'Adam',
 email: 'adam@jseverywhere.io',

21.1 Using Express to Respond to Requests | 45

 avatar: 'https://s.gravatar.com/avatar/33aab819d1ffa11fc4b31a4eebaf0c5a?s=80'
};

// render the template with user data
app.get('/user', (req, res) => {
 res.render('user', { userData });
});

Then in our template, we can make use of the data:
html
 head
 title User Page
 body
 h1 #{userData.name} Profile
 ul
 li
 image(src=userData.avatar)
 li #{userData.name}
 li #{userData.email}

The Pug templating engine is maintained by the Express core team and is a popular
choice for Express applications, but its whitespace-driven syntax is not for everyone.
EJS is an excellent alternative that offers a more HTML-like syntax. Here’s how the
above example would look using EJS.

First, specify to install the ejs package:
$ npm install ejs

Then set EJS as the view engine in your Express application:
app.set('view engine', 'ejs');

And in views/user.ejs:
<!DOCTYPE html>
<html lang="en">
 <head>
 <title>User Page</title>
 </head>
 <body>
 <h1><%= userData.name %> Profile</h1>

 <img src=<%= userData.avatar %> />
 <%= userData.name %>
 <%= userData.email %>

 </body>
</html>

46 | Chapter 21: Building Web Applications with Express

https://ejs.co

21.2 Using the Express-Generator
Problem
You’re interested in using Express to manage your server-side data application, but
you don’t want to manage all of the setup yourself.

Solution
To kickstart your Express application, use the Express-Generator. This is a command-
line tool that generates the skeleton infrastructure of a typical Express application.

First, create a working directory where the tool can safely install a new application
subdirectory. Next, run the express-generator command with npx:

$ npx express-generator --pug --git

I’ve passed two options with the command: --pug will result in the use of the Pug
templating engine, while --git will generate a default .gitignore file in the project
directory. For the full list of options, run the generator with the -h option:

$ npx express-generator -h

The generator creates a new directory with several subdirectories, some basic files to
get you started, and a package.json file with all of the dependencies. To install the
dependencies, change to the newly created directory and type:

$ npm install

Once all of the dependencies are installed, run the application using the following:
$ npm start

You can now access the generated Express application, using your IP address or
domain and port 3000, the default Express port.

Discussion
Express provides a web application framework based on Node and with support for
multiple templating engines and CSS preprocessors. In the solution, the options I
chose for the example application are Pug as the template engine (the default) and the
default of plain CSS (no CSS preprocessor). Though building the application from
scratch enables a wider selection, Express supports only the following template
engines:

--ejs
Adds support for the EJS template engine

21.2 Using the Express-Generator | 47

--pug
Adds support for the Pug template engine

--hbs
Adds support for the Handlebar template engine

--hogan
Adds support for the Hogan.js template engine

Express also supports the following CSS preprocessors:

express --css sass
Support for Sass

express --css less
Support for Less

express --css stylus
Support for Stylus

express --css compass
Support for Compass

Not specifying any CSS preprocessor defaults to plain CSS.

Express also assumes that the project directory is empty. If it isn’t, force the Express
generator to generate the content by using the -f or --force option.

The newly generated subdirectory has the following structure (disregarding node
_modules):

app.js
package-lock.json
package.json
/bin
 www
/node_modules
/public
 /images
 /javascripts
 /stylesheets
 style.css
 style.styl
/routes
 index.js
 users.js
/views
 error.pug
 index.pug
 layout.pug

48 | Chapter 21: Building Web Applications with Express

The app.js file is the core of the Express application. It includes the references to the
necessary libraries:

var createError = require('http-errors');
var express = require('express');
var path = require('path');
var cookieParser = require('cookie-parser');
var logger = require('morgan');

var indexRouter = require('./routes/index');
var usersRouter = require('./routes/users');

Although the convention followed in this book is to use const and
let to define variables, at the time of writing, the Express generator
uses var.

It also creates the Express app with the following line:
var app = express():

Next, it establishes Pug as the view engine by defining the views and view engine
variables:

app.set('views', path.join(__dirname, 'views'));
app.set('view engine', 'pug');

The middleware calls are loaded next with app.use(). Middleware is functionality
that sits between the raw request and the routing, processing specific types of
requests. The rule for the middleware is if a path is not given as the first parameter, it
defaults to a path of /, which means the middleware functions are loaded with the
default path. In the following generated code:

app.use(logger('dev'));
app.use(express.json());
app.use(express.urlencoded({ extended: false }));
app.use(cookieParser());
app.use(express.static(path.join(__dirname, 'public')));

The first several middleware are loaded with every app request. Among the middle‐
ware includes support for development logging, as well as parsers for both JSON and
urlencoded bodies. It’s only when we get to the static entry that we see assignment to
specific paths: the static file request middleware are loaded when requests are made to
the public directory.

The routing is handled next:
app.use('/', indexRouter);
app.use('/users', usersRouter);

21.2 Using the Express-Generator | 49

The top-level web request (/) is directed to the routes module, while all user requests
(/users) get routed to the users module.

Read more about routing with Express in Recipe 21.3.

What follows is the error handling. First up is 404 error handling when a request is
made to a nonexistent web resource:

app.use(function(req, res, next) {
 next(createError(404));
});

Next comes the server error handling, for both production and development:
app.use(function(err, req, res, next) {
 // set locals, only providing error in development
 res.locals.message = err.message;
 res.locals.error = req.app.get('env') === 'development' ? err : {};

 // render the error page
 res.status(err.status || 500);
 res.render('error');
});

The last line of the generated file is the module.exports for the app:
module.exports = app;

In the routes subdirectory, the default routing is included in the routes/index.js file:
var express = require('express');
var router = express.Router();

/* GET home page. */
router.get('/', function(req, res, next) {
 res.render('index', { title: 'Express' });
});

module.exports = router;

What’s happening in the file is the Express router is used to route any HTTP GET
requests to / to a callback where the request response receives a view rendered for the
specific resource page. This is in contrast to what happens in the routes/users.js file,
where the response receives a text message rather than a view:

var express = require('express');
var router = express.Router();

50 | Chapter 21: Building Web Applications with Express

/* GET users listing. */
router.get('/', function(req, res, next) {
 res.send('respond with a resource');
});

module.exports = router;

What happens with the view rendering in the first request? There are three Pug files
in the views subdirectory: one for error handling, one defining the page layout, and
one, index.pug, that renders the page. The index.pug file contains:

extends layout

block content
 h1= title
 p Welcome to #{title}

It extends the layout.pug file, which contains:
doctype html
html
 head
 title= title
 link(rel='stylesheet', href='/stylesheets/style.css')
 body
 block content

The layout.pug file defines the overall structure of the page, regardless of content,
including a reference to an automatically generated CSS file. The block content set‐
ting defines where the location of the content is placed. The format for the content is
defined in index.js, in the equivalently named block content setting.

The Pug templating engine (formerly known as Jade) was popular‐
ized by Express and offers a minimalist take on templating that
makes use of whitespace in place of traditional HTML style tags.
This approach may not be for everyone, and the Pug alternatives
(Handlebars, Hogan.js, and EJS) all offer a more HTML-like
syntax.

The two Pug files define a basic web page with an h1 element assigned a title variable,
and a paragraph with a welcome message. Figure 21-1 shows the default page.

21.2 Using the Express-Generator | 51

Figure 21-1. #e Express-generated web page

Figure 21-1 shows that the page isn’t especially fascinating, but it does represent how
the pieces are holding together: the application router routes the request to the
appropriate route module, which directs the response to the appropriate rendered
view, and the rendered view uses data passed to it to generate the web page. If you
make the following web request:

http://yourdomain.com:3000/users

you’ll see the plain text message, rather than the rendered view.

By default, Express is set up to run in development mode. To change the application to
production mode, you need to set an environment variable, NODE-ENV to “production.”
In a Linux or Unix environment, the following could be used:

$ export NODE_ENV=production

21.3 Routing
Problem
You want to route users to different resources in your application based on the
request.

Solution
Use routes in Express to send specific resources based on the request path and
parameters:

52 | Chapter 21: Building Web Applications with Express

// respond with different route paths
app.get('/', (req, res) => res.send('Hello World'));
app.get('/users', (req, res) => res.send('Hello users'));

// parameters
app.get('/users/:userId', (req, res) => {
 res.send(`Hello user ${req.params.userId}`);
});

Discussion
In Express, we can return a response to the user when they make an HTTP request.
In the above examples, I’m using get requests, but Express supports a number of
additional methods. The most common of these methods are:

• app.get: request data
• app.post: send data
• app.put: send or update data
• app.delete: delete data

app.post('/new', (req, res) => {
 res.send('POST request to the `new` route');
});

Often we may want to enable multiple HTTP methods to a specific route. We can
accomplish this by chaining them together:

app
 .route('/record')
 .get((req, res) => {
 res.send('Get a record');
 })
 .post((req, res) => {
 res.send('Add a record');
 })
 .put((req, res) => {
 res.send('Update a record');
 });

Often requests have parameters with specific values that we will make use of in our
application. We can specify these in the URL using a colon (:):

app.get('/users/:userId', (req, res) => {
 res.send(`Hello user ${req.params.userId}`);
});

In the above example, when a user visits a URL at /users/adam123, the browser will
send the response of Hello user adam123. While this is a simple example, we could

21.3 Routing | 53

also make use of the URL parameter to retrieve data from our database, passing the
information on to a template.

We’re also able to specify formats for the request parameters. In the following exam‐
ple, I make use of a regular expression to limit the noteId parameter to a six-digit
integer:

app.get('^/users/:userId/notes/:noteId([0-9]{6})', (req, res) => {
 res.send(`This is note ${req.params.noteId}`);
});

We are also able to use a regular expression to define an entire route:
app.get(/.*day$/, (req, res) => {
 res.send(`Every day feels like ${req.path}`);
});

The above example will route any request ending in day. For example, in local devel‐
opment a request to http://localhost:3000/Sunday will result in “Every day feels like
Sunday” being printed to the page.

21.4 Working with OAuth
Problem
You need access to a third-party API (such as GitHub, Facebook, or Twitter) in your
Node application, but it requires authorization. Specifically, it requires OAuth
authorization.

Solution
You’ll need to incorporate an OAuth client in your application. You’ll also need to
meet the OAuth requirements demanded by the resource provider.

See the discussion for details.

Discussion
OAuth is an authorization framework used with most popular social media and cloud
content applications. If you’ve ever gone to a site and it’s asked you to authorize access
to data from a third-party service, such as GitHub, you’ve participated in the OAuth
authorization !ow.

There are two versions of OAuth, 1.0 and 2.0, which are not compatible with one
another. OAuth 1.0 was based on proprietary APIs developed by Flickr and Google,
was heavily web page focused, and didn’t gracefully transcend the barrier among web,
mobile, and service applications. When wanting to access resources in a mobile
phone app, the app would have the user log in to the app in a mobile browser and

54 | Chapter 21: Building Web Applications with Express

then copy access tokens to the app. Other criticisms of OAuth 1.0 is that the process
required that the authorization server be the same as the resource server, which
doesn’t scale when you’re talking about service providers such as Twitter, Facebook,
and Amazon.

OAuth 2.0 presents a simpler authorization process, and also provides different types
of authorization (different flows) for different circumstances. Some would say,
though, that it does so at the cost of security, as it doesn’t have the same demands for
encrypting hash tokens and request strings.

Most developers won’t have to create an OAuth 2.0 server, and doing so is way
beyond the scope of this book, much less this recipe. But it’s common for applications
to incorporate an OAuth client (1.0 or 2.0) for one service or another, so I’m going to
present different types of OAuth use. First, though, let’s discuss the differences
between authorization and authentication.

Authorization isn’t authentication
Authorization is saying, “I authorize this application to access my resources on your
server.” Authentication is the process of authenticating whether you are, indeed, the
person who owns this account and has control over these resources. An example
would be if I want to comment on an article at a newspaper’s online site. It will likely
ask me to log in via some service. If I pick my Facebook account to use as the login,
the news site will most likely want some data from Facebook.

The news site is, first, authenticating me as a legitimate Facebook user, with an estab‐
lished Facebook account. In other words, I’m not just some random person coming
in and commenting anonymously. Secondly, the news site wants something from me
in exchange for the privilege of commenting: it’s going to want data about me. Per‐
haps it will ask for permission to post for me (if I post my comment to Facebook as
well as the news site). This is both an authentication and an authorization request.

If I’m not already logged in to Facebook, I’ll have to log in. Facebook is using my cor‐
rect application of username and password to authenticate that, yes, I own the Face‐
book account in question. Once logged in, Facebook asks whether I agree to giving
the newspaper site the authorization to access the resources it wants. If I agree
(because I desperately want to comment on a particular story), Facebook gives the
news site the authorization, and there’s now a persistent connection from the newspa‐
per to my Facebook account (which you can see in your Facebook settings). I can
make my comment, and make comments at other stories, until I log out or revoke the
Facebook authorization.

Of course, none of this implies that Facebook or the news site are actually authenti‐
cating who I am. Authentication, in this case, is about establishing that I am the
owner of the Facebook account. The only time real authentication enters the picture
is in a social media context such as Twitter’s authenticated accounts for celebrities.

21.4 Working with OAuth | 55

Our development task is made simpler by the fact that software to handle authoriza‐
tion is frequently the same software that authenticates the individual, so we’re not
having to deal with two different JavaScript libraries/modules/systems. There are also
several excellent OAuth (1.0 and 2.0) modules we can use in Node applications. One
of the most popular is Passport, and there are extensions for various authorization
services created specifically for the Passport system. However, there are also very sim‐
ple OAuth clients that provide barebones authorization access for a variety of serv‐
ices, and some modules that are created specifically for one service.

Passport.js is covered in Recipe 21.5. You can also read more about
Passport and its various strategies supporting different servers at its
website.

Now, on to the technology.

Client Credentials Grant
There are few web resources that nowadays provide an API you can access without
having some kind of authorization credential. This means having to incorporate a
round-trip directive to the end users—asking them to authorize access to their
account at the service before the application can access data. The problem is that
sometimes all you need is simple read-only access without update privileges, without
a frontend login interface, and without having a specific user make an authorizing
grant.

OAuth 2.0 accounts for this particular type of authorizing flow with the Client Cre‐
dentials Grant. The diagram for this simplified authorization is shown in Figure 21-2.

Figure 21-2. #e Client Credentials Grant authorization !ow

Twitter provides what it calls application-only authorization, which is based on
OAuth 2.0’s Client Credentials Grant. We can use this type of authorization to access
Twitter’s Search API.

In the following example, I used the Node module oauth to implement the authoriza‐
tion. It’s the most basic of the authorization modules, and supports both OAuth 1.0
and OAuth 2.0 authorization flows:

56 | Chapter 21: Building Web Applications with Express

http://www.passportjs.org

const OAuth = require('oauth');
const fetch = require('node-fetch');
const { promisify } = require('util');

// read Twitter keys from a .env file
require('dotenv').config();

// Twitter's search API endpoint and the query we'll be searching
const endpointUrl = 'https://api.twitter.com/2/tweets/search/recent';
const query = 'javascript';

async function getTweets() {
 // consumer key and secret passed in from environment variables
 const oauth2 = new OAuth.OAuth2(
 process.env.TWITTER_CONSUMER_KEY,
 process.env.TWITTER_CONSUMER_SECRET,
 'https://api.twitter.com/',
 null,
 'oauth2/token',
 null
);

 // retrieve the credentials from Twitter
 const getOAuthAccessToken = promisify(
 oauth2.getOAuthAccessToken.bind(oauth2)
);
 const token = await getOAuthAccessToken('', {
 grant_type: 'client_credentials'
 });

 // make the request for data with the retrieved token
 const res = await fetch(`${endpointUrl}?query=${query}`, {
 headers: {
 authorization: `Bearer ${token}`
 }
 });

 const json = await res.json();
 return json;
}

(async () => {
 try {
 // Make request
 const response = await getTweets();
 console.log(response);
 } catch (e) {
 console.log(e);
 process.exit(-1);
 }
 process.exit();
})();

21.4 Working with OAuth | 57

To use the Twitter authorization API, the client application has to register its applica‐
tion with Twitter. Twitter provides both a consumer key and a consumer secret.

Using the oauth module, a new OAuth2 object is created, passing in:

• Consumer key
• Consumer secret
• API base URI (API URI minus the query string)
• A value of null signals OAuth to use the default /oauth/authorize
• The access token path
• Null, because we’re not using any custom headers

The oauth module takes this data and forms a POST request to Twitter, passing along
the consumer key and secret, as well as providing a scope for the request. Twitter’s
documentation provides an example POST request for an access token (line breaks
inserted for readability):

POST /oauth2/token HTTP/1.1
Host: api.twitter.com
User-Agent: My Twitter App v1.0.23
Authorization: Basic eHZ6MWV2RlM0d0VFUFRHRUZQSEJvZzpMOHFxOVBaeVJn
 NmllS0dFS2hab2xHQzB2SldMdzhpRUo4OERSZHlPZw==
 Content-Type: application/x-www-form-urlencoded;charset=UTF-8
Content-Length: 29
Accept-Encoding: gzip

grant_type=client_credentials

The response includes the access token (again, line breaks for readability):
HTTP/1.1 200 OK
Status: 200 OK
Content-Type: application/json; charset=utf-8
...
Content-Encoding: gzip
Content-Length: 140

{"token_type":"bearer","access_token":"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
%2FAAAAAAAAAAAAAAAAAAAA%3DAA"}

The access token has to be used with any of the API requests. There are no further
authorization steps, so the process is very simple. In addition, since the authorization
is at the application level, it doesn’t require an individual’s authorization, making it
less disruptive to the user.

58 | Chapter 21: Building Web Applications with Express

Twitter provides wonderful documentation. I recommend reading
the “Application-only authentication overview”.

Read/write authorization with OAuth 1.0
Application-Only authentication is great for accessing read-only data, but what if you
want to access a user’s specific data, or even make a change to their data? Then you’ll
need the full OAuth authorization. In this section, we’ll again use Twitter for the dem‐
onstration because of its use of OAuth 1.0 authorization. In the next recipe, we’ll look
at OAuth 2.0.

I refer to it as OAuth 1.0, but Twitter’s service is based on OAuth
Core 1.0 Revision A. However, it’s a lot easier just to say OAuth 1.0.

OAuth 1.0 requires a digital signature. The steps to derive this digital signature,
graphically represented in Figure 21-3, and as outlined by Twitter, are:

1. Collect the HTTP method and the base URI, minus any query string.
2. Collect the parameters, including the consumer key, request data, nonce, signa‐

ture method, and so on.
3. Create a signature base string, which consists of the data we’ve gathered, formed

into a string in a precise manner, and encoded just right.
4. Create a signing key, which is a combination of consumer key and OAuth token

secret, again combined in a precise manner.
5. Pass the signature base string and the signing key to an HMAC-SHA1 hashing

algorithm, which returns a binary string that needs further encoding.

Figure 21-3. OAuth 1.0 authorization !ow

21.4 Working with OAuth | 59

https://oreil.ly/Mikyl
http://oauth.net/core/1.0a
http://oauth.net/core/1.0a

You have to follow this process for every request. Thankfully, we have modules and
libraries that do all of this mind-numbing work for us. I don’t know about you, but if
I had to do this, my interest in incorporating Twitter data and services into my appli‐
cation would quickly wane.

Our friend oauth provides the underlying OAuth 1.0 support, but we don’t have to
code to it directly this time. Another module, node-twitter-api, has wrapped all of
the OAuth pieces. All we need do is create a new node-twitter-api object, passing in
our consumer key and secret, as well as the callback/redirect URL required by the
resource services, as part of the authorization process. Processing the request object
in that URL provides us the access token and secret we need for API access. Every
time we make a request, we pass in the access token and secret.

The twitter-node-api module is a thin wrapper around the REST API: to make a
request, we extrapolate what the function is from the API. If we’re interested in post‐
ing a status update, the REST API endpoint is:

https://api.twitter.com/1.1/statuses/update.json

The twitter-node-api object instance function is statuses(), and the first parame‐
ter is the verb, update:

 twitter.statuses('update', {
 "status": "Hi from Shelley's Toy Box. (Ignore--developing Node app)"
 }, atoken, atokensec, function(err, data, response) {...});

twitter.statuses(
 'update',
 {
 status: 'Ignore learning OAuth with Node'
 },
 tokenValues.atoken,
 tokenValues.atokensec,
 (err, data) => { ... });

The callback function arguments include any possible error, requested data (if any),
and the raw response.

A complete example is shown in Example 21-1. It uses Express as a server and provides
a primitive web page for the user, and then uses another module.

Example 21-1. Twitter app fully authorized via OAuth 1.0

const express = require('express');
const TwitterAPI = require('node-twitter-api');

require('dotenv').config();

const port = process.env.PORT || '8080';

60 | Chapter 21: Building Web Applications with Express

// keys and callback URL are configured in the Twitter Dev Center
const twitter = new TwitterAPI({
 consumerKey: process.env.TWITTER_CONSUMER_KEY,
 consumerSecret: process.env.TWITTER_CONSUMER_SECRET,
 callback: 'http://127.0.0.1:8080/oauth/callback'
});

// object for storing retrieved token values
const tokenValues = {};

// twitter OAuth API URL
const twitterAPI = 'https://api.twitter.com/oauth/authenticate';

// simple HTML template
const menu =
 'Say hello
' +
 'Account Settings
';

// Create a new Express application.
const app = express();

// request Twitter permissions when the / route is visited
app.get('/', (req, res) => {
 twitter.getRequestToken((error, requestToken, requestTokenSecret) => {
 if (error) {
 console.log(`Error getting OAuth request token : ${error}`);
 res.writeHead(200);
 res.end(`Error getting authorization${error}`);
 } else {
 tokenValues.token = requestToken;
 tokenValues.tokensec = requestTokenSecret;
 res.writeHead(302, {
 Location: `${twitterAPI}?oauth_token=${requestToken}`
 });
 res.end();
 }
 });
});

// callback url as specified in the Twitter Developer Center
app.get('/oauth/callback', (req, res) => {
 twitter.getAccessToken(
 tokenValues.token,
 tokenValues.tokensec,
 req.query.oauth_verifier,
 (err, accessToken, accessTokenSecret) => {
 res.writeHead(200);
 if (err) {
 res.end(`problems getting authorization with Twitter${err}`);
 } else {
 tokenValues.atoken = accessToken;
 tokenValues.atokensec = accessTokenSecret;

21.4 Working with OAuth | 61

 res.end(menu);
 }
 }
);
});

// post a status update from an authenticated and authorized users
app.get('/post/status/', (req, res) => {
 twitter.statuses(
 'update',
 {
 status: 'Ignore teaching OAuth with Node'
 },
 tokenValues.atoken,
 tokenValues.atokensec,
 (err, data) => {
 res.writeHead(200);
 if (err) {
 res.end(`problems posting ${JSON.stringify(err)}`);
 } else {
 res.end(`posting status: ${JSON.stringify(data)}
${menu}`);
 }
 }
);
});

// get account details for an authenticated and authorized user
app.get('/get/account/', (req, res) => {
 twitter.account(
 'settings',
 {},
 tokenValues.atoken,
 tokenValues.atokensec,
 (err, data) => {
 res.writeHead(200);
 if (err) {
 res.end(`problems getting account ${JSON.stringify(err)}`);
 } else {
 res.end(`<p>${JSON.stringify(data)}</p>${menu}`);
 }
 }
);
});

app.listen(port, () => console.log(`Listening on port ${port}!`));

62 | Chapter 21: Building Web Applications with Express

The routes of interest in the app are:

• /: Page that triggers a redirect to Twitter for authorization
• /auth: The callback or redirect URL registered with the app, and passed in the

request
• /post/status/: Post a status to the Twitter account
• /get/account/: Get account information for the individual

In each case, the appropriate node-twitter-api function is used:

• /: Get a request token and request token secret, using getRequestToken()
• /auth/: Get the API access token and token secret, caching them locally, display

menu
• /post/status/: status() with update as first parameter, status, access token and

secret, and callback function
• /get/account/: account() with settings as the first parameter, an empty object,

since no data is needed for the request, and the access token, secret, and callback

The Twitter authorization page that pops up is displayed in Figure 21-4, and the web
page that displays account information for yours truly is displayed in Figure 21-5.

Though it is no longer actively maintained, you can read more
about the node-twitter-api module at its GitHub repository page.
Other libraries are more actively maintained and provide the same
type of functionality, but I found node-twitter-api offers the sim‐
plest functional example for the purpose of demonstration.

21.4 Working with OAuth | 63

https://github.com/reneraab/node-twitter-api

Figure 21-4. Twitter authorization page, redirected from the recipe app

Figure 21-5. Display of Twitter user account data in app

21.5 OAuth 2 User Authentication with Passport.js
Problem
You want to authenticate users in your application through a third-party service.

64 | Chapter 21: Building Web Applications with Express

Solution
Use the Passport.js library paired with the appropriate strategy for the authentication
provider you’ve chosen. In this example, I’ll make use of the GitHub strategy, but the
workflow will be identical for any OAuth 2 provider, including Facebook, Google,
and Twitter.

You can make use of the GitHub strategy, first by visiting GitHub’s website and regis‐
tering a new OAuth application. Once the application is registered, you can integrate
the Passport.js OAuth code into the application.

To begin, configure the Passport strategy, which will include the GitHub-provided cli‐
ent ID and client secret, along with the callback URL that you have specified:

const express = require('express');
const passport = require('passport');
const { Strategy } = require('passport-github');

passport.use(
 new Strategy(
 {
 clientID: GITHUB_CLIENT_ID,
 clientSecret: GITHUB_CLIENT_SECRET,
 callbackURL: 'login/github/callback'
 },
 (accessToken, refreshToken, profile, cb) => {
 return cb(null, profile);
 }
)
);

To restore authentication state across HTTP requests, Passport needs to serialize and
deserialize users:

passport.serializeUser((user, cb) => {
 cb(null, user);
});

passport.deserializeUser((obj, cb) => {
 cb(null, obj);
});

To preserve user logins across browser sessions, make use of the express-session
middleware:

app.use(
 require('express-session')({
 secret: SESSION_SECRET,
 resave: true,
 saveUninitialized: true
 })
);

21.5 OAuth 2 User Authentication with Passport.js | 65

https://github.com/settings/applications/new
https://github.com/settings/applications/new

app.use(passport.session());

You can then authenticate requests using passport.authenticate:
app.use(passport.initialize());

app.get('/login/github', passport.authenticate('github'));

app.get(
 '/login/github/callback',
 passport.authenticate('github', { failureRedirect: '/login' }),
 (req, res) => {
 res.redirect('/');
 }
);

And reference the user object from requests:
app.get('/', (req, res) => {
 res.render('home', { user: req.user });
});

Discussion
OAuth is an open standard for user authentication. It allows us to authenticate users
through third-party applications. This can be useful when allowing users to easily
create accounts and log in to your applications, as well as for authenticating to use
data from a third-party source.

OAuth requests follow a specific flow:

1. Your application makes an authorization request to the third-party service.
2. The user approves that request.
3. The service redirects the user back to your application, along with an authoriza‐

tion code.
4. The application makes a request to the third-party service with the authorization

code.
5. The service responds with an access token (and optionally a refresh token).
6. The application makes a request to the service with the access token.
7. The service responds with the protected resource (in our case, the user account

information).

Using Passport.js along with a Passport.js strategy for the OAuth provider simplifies
this flow in an Express.js application. In this example, we’ll build a small Express
application that authenticates with GitHub and persists user logins across sessions.

66 | Chapter 21: Building Web Applications with Express

Once we have registered our application with the service provider, we can begin
development by installing the appropriate dependencies:

install general application dependencies
npm install express pug dotenv
install passport dependencies
npm install passport passport-github
install persistent user session dependencies
npm install connect-ensure-login express-session

To store our OAuth client ID, client secret, and session secret values, we will use
a .env file. Alternately, you could use a JavaScript file (such as a con"g.js file). It is crit‐
ical that we not check this file into public source control, and I recommend adding it
to your .gitignore file. In .env:

GITHUB_CLIENT_ID=<Your client ID>
GITHUB_CLIENT_SECRET=<Your client secret>
SESSION_SECRET=<A session secret - this can be any value you decide>

Next, we’ll set up our Express application with Passport.js. In index.js:
const express = require('express');
const passport = require('passport');
const { Strategy } = require('passport-github');

require('dotenv').config();

const port = process.env.PORT || '3000';

// Configure the Passport strategy
passport.use(
 new Strategy(
 {
 clientID: process.env.GITHUB_CLIENT_ID,
 clientSecret: process.env.GITHUB_CLIENT_SECRET,
 callbackURL: `http://localhost:${port}/login/github/callback`
 },
 (accessToken, refreshToken, profile, cb) => {
 return cb(null, profile);
 }
)
);

// Serialize and deserialize the user
passport.serializeUser((user, cb) => {
 cb(null, user);
});

passport.deserializeUser((obj, cb) => {
 cb(null, obj);
});

// create the Express application

21.5 OAuth 2 User Authentication with Passport.js | 67

const app = express();
app.set('views', `${__dirname}/views`);
app.set('view engine', 'pug');

// use the Express session middleware for preserving user session
app.use(
 require('express-session')({
 secret: process.env.SESSION_SECRET,
 resave: true,
 saveUninitialized: true
 })
);

// Initialize passport and restore the authentication state from the session
app.use(passport.initialize());
app.use(passport.session());

// listen on port 3000 or the PORT set as an environment variable
app.listen(port, () => console.log(`Listening on port ${port}!`));

You can then build your view templates, which can access the user data.

In views/home.pug:
if !user
 p Welcome! Please
 a(href='/login/github') Login with GitHub
else
 h1 Hello #{user.username}!
 p View your
 a(href='/profile') profile

In views/login.pug:
h1 Login
a(href='/login/github') Login with GitHub

In views/pro"le.pug:
h1 Profile
ul
 li ID: #{user.id}
 li Name: #{user.username}
 if user.emails
 li Email: #{user.emails[0].value}

Finally, we can set up our routes in the index.js file:
app.get('/', (req, res) => {
 res.render('home', { user: req.user });
});

app.get('/login', (req, res) => {
 res.render('login');
});

68 | Chapter 21: Building Web Applications with Express

app.get('/login/github', passport.authenticate('github'));

app.get(
 '/login/github/callback',
 passport.authenticate('github', { failureRedirect: '/login' }),
 (req, res) => {
 res.redirect('/');
 }
);

app.get(
 '/profile',
 require('connect-ensure-login').ensureLoggedIn(),
 (req, res) => {
 res.render('profile', { user: req.user });
 }
);

This example was designed to closely match the Express 4.x Facebook example, which
provides well-documented code for working with Express and Facebook authentica‐
tion. You can view hundreds of additional Passport.js strategies.

21.6 Serving Up Formatted Data
Problem
Instead of serving up a web page or sending plain text, you want to return formatted
data, such as XML, to the browser.

Solution
Use Node module(s) to help format the data. For example, if you want to return
XML, you can use a module to create the formatted data:

const builder = require('xmlbuilder');

const xml = builder
 .create('resources')
 .ele('resource')
 .ele('title', 'Ecma-262 Edition 10')
 .up()
 .ele('url', 'https://www.ecma-international.org/ecma-262/10.0/index.html')
 .up()
 .end({ pretty: true });

Then create the appropriate header to go with the data, and return the data to the
browser:

21.6 Serving Up Formatted Data | 69

https://github.com/passport/express-4.x-facebook-example
http://www.passportjs.org

app.get('/', (req, res) => {
 res.setHeader('Content-Type', 'application/xml');
 res.end(xml.toString(), 'utf8');
});

Discussion
Web servers frequently serve up static or server-side generated resources, but just as
frequently, what’s returned to the browser is formatted data that’s then processed in
the web page before display.

There are two key elements to generating and returning formatted data. The first is to
make use of whatever Node library to simplify the generation of the data, and the sec‐
ond is to make sure that the header data sent with the data is appropriate for the data.

In the solution, the xmlbuilder module is used to assist us in creating proper XML.
This isn’t one of the modules installed with Node by default, so we have to install it
using npm, the Node Package Manager:

npm install xmlbuilder

Then it’s a matter of creating a new XML document, a root element, and then each
resource element, as demonstrated in the solution. It’s true, we could build the XML
string ourselves, but that’s a pain. And it’s too easy to make mistakes that are then
hard to discover. One of the best things about Node is the enormous number of mod‐
ules available to do most anything we can think of. Not only do we not have to write
the code ourselves, but most of the modules have been thoroughly tested and actively
maintained.

Once the formatted data is ready to return, create the header that goes with it. In the
solution, because the document is XML, the header content type is set to applica
tion/xml before the data is returned as a string.

21.7 Building a RESTful API
Problem
You want to build a REST API using Node.js.

Solution
Use Express with the app.get, app.post, app.put, and app.delete methods:

const express = require('express');

const app = express();
const port = process.env.PORT || 3000;

70 | Chapter 21: Building Web Applications with Express

app.get('/', (req, res) => {
 return res.send('Received a GET HTTP method');
});
app.post('/', (req, res) => {
 return res.send('Received a POST HTTP method');
});
app.put('/', (req, res) => {
 return res.send('Received a PUT HTTP method');
});
app.delete('/', (req, res) => {
 return res.send('Received a DELETE HTTP method');
});
app.listen(port, () => console.log(`Listening on port ${port}!`));

Discussion
REST stands for “Representational State Transfer,” and is the most common architec‐
tural approach for building APIs. REST allows us to interact with a remote data
source over HTTP, using the standard HTTP methods of GET, POST, PUT, and DELETE.
We can make use of the Express routing methods to accept these requests.

In the following example, I’ll create several routes that serve as API endpoints. Each
endpoint will respond to an HTTP request:

/todos

Will accept a get request for a list of todos as well as a post request for creating a
new todo.

/todos/:todoId

Will accept a get request that will return a specific todo as well as a put request,
which will allow the user to update the todo content or completed state, and a
delete request, which will delete the specific todo.

With these routes defined, we can develop a REST API that responds to these
requests appropriately:

const express = require('express');

const port = process.env.PORT || 3000;
const app = express();
app.use(express.json());
app.use(express.urlencoded({ extended: true }));

// an array of data
let todos = [
 {
 id: '1',
 text: 'Order pizza',
 completed: true
 },

21.7 Building a RESTful API | 71

 {
 id: '2',
 text: 'Pick up pizza',
 completed: false
 }
];

// get the list of todos
app.get('/todos', (req, res) => {
 return res.send({ data: { todos } });
});

// get an individual todo
app.get('/todos/:todoId', (req, res) => {
 const foundTodo = todos.find(todo => todo.id === req.params.todoId);
 return res.send({ data: foundTodo });
});

// create a new todo
app.post('/todos', (req, res) => {
 const todo = {
 id: String(todos.length + 1),
 text: req.body.text,
 completed: false
 };

 todos.push(todo);
 return res.send({ data: todo });
});

// update a todo
app.put('/todos/:todoId', (req, res) => {
 const todoIndex = todos.findIndex(todo => todo.id === req.params.todoId);
 const todo = {
 id: req.params.todoId,
 text: req.body.text || todos[todoIndex].text,
 completed: req.body.completed || todos[todoIndex].completed
 };

 todos[todoIndex] = todo;
 return res.send({ data: todo });
});

// delete a todo
app.delete('/todos/:todoId', (req, res) => {
 const deletedTodo = todos.find(todo => todo.id === req.params.todoId);
 todos = todos.filter(todo => todo.id !== req.params.todoId);
 return res.send({ data: deletedTodo });
});

// listen on port 3000 or the PORT set as an environment variable
app.listen(port, () => console.log(`Listening on port ${port}!`));

72 | Chapter 21: Building Web Applications with Express

From the terminal, you can use curl to test our responses:
get the list of todos
curl http://localhost:3000/todos

get an individual todo
curl http://localhost:3000/todos/1

create a new todo
curl -X POST -H "Content-Type:application/json" /
 http://localhost:3000/todos -d '{"text":"Eat pizza"}'

update a todo
curl -X PUT -H "Content-Type:application/json" /
 http://localhost:3000/todos/2 -d '{"completed": true }

delete a todo
curl -X DELETE http://localhost:3000/todos/3

Manually testing with curl can quickly become tedious. For API development, you
may also want to make use of a REST client UI, such as Insomnia or Postman (see
Figure 21-6).

Figure 21-6. A GET request in the Insomnia REST client

In the above example, I’m using an in-memory data store. When building an API,
you will most likely want to connect to a database. To do so, you can reach for a
library such as Sequelize (for SQL databases), Mongoose (for MongoDB), or an
online data store such as Firebase.

21.7 Building a RESTful API | 73

https://insomnia.rest
https://postman.com
https://oreil.ly/NuXyR
https://oreil.ly/zP8Fr
https://oreil.ly/iZSFB

21.8 Building a GraphQL API
Problem
You would like to build a GraphQL API server application or add GraphQL end‐
points to an existing Express application.

Solution
Use the Apollo Server package to include GraphQL type definitions, GraphQL resolv‐
ers, and the GraphQL Playground:

const express = require('express');
const { ApolloServer, gql } = require('apollo-server-express');

const port = process.env.PORT || 3000;
const app = express();

const typeDefs = gql`
 type Query {
 hello: String
 }
`;

const resolvers = {
 Query: {
 hello: () => 'Hello world!'
 }
};
const server = new ApolloServer({ typeDefs, resolvers });
server.applyMiddleware({ app, path: '/' });
app.listen({ port }, () => console.log(`Listening on port ${port}!`));

Apollo Server provides access to the GraphQL Playground (see Figure 21-7), which
allows us to easily interact with the API during development (and in production, if
desired).

74 | Chapter 21: Building Web Applications with Express

Figure 21-7. A GraphQL query in the GraphQL Playground

The GraphQL Playground also provides automatically generated documentation for
the API, based on the type definitions you’ve provided (see Figure 21-8).

21.8 Building a GraphQL API | 75

Figure 21-8. #e generated documentation in GraphQL Playground

Discussion
GraphQL is an open source query language for APIs. It was developed with the goal
of providing single endpoints for data, allowing applications to request the specific
data that is needed. Apollo Server can be used as a standalone package or integrated
as middleware for popular Node.js server application libraries, such as Express, Hapi,
Fastify, and Koa.

In GraphQL, a type definition schema is a written representation of our data and
interactions. By requiring a schema, GraphQL enforces a strict plan for our API. This
is because your API can only return data and perform interactions that are defined
within the schema. The fundamental component of GraphQL schemas are object
types. GraphQL contains five built-in scalar types:

• String: A string with UTF-8 character encoding
• Boolean: A true or false value
• Int: A 32-bit integer
• Float: A floating-point value

76 | Chapter 21: Building Web Applications with Express

https://oreil.ly/toPLM

• ID: A unique identifier

Once the schema is written, we provide the API with a series of resolvers. These are
functions that specify how the data should be returned in a query or changed within a
data mutation.

In the previous example, we’re using the apollo-server-express package, which
should be installed alongside the express and gql packages:

$ npm install express apollo-server-express gql

To create a CRUD application, we can define our GraphQL type definitions and the
appropriate resolvers. The following example mimics the one found in Recipe 21.7:

const express = require('express');
const { ApolloServer, gql } = require('apollo-server-express');

const port = process.env.PORT || 3000;
const app = express();

// an array of data
let todos = [
 {
 id: '1',
 text: 'Order pizza',
 completed: true
 },
 {
 id: '2',
 text: 'Pick up pizza',
 completed: false
 }
];

// GraphQL Type Definitions
const typeDefs = gql`
 type Query {
 todos: [Todo!]!
 todo(id: ID!): Todo!
 }

 type Mutation {
 newTodo(text: String!): Todo!
 updateTodo(id: ID!, text: String, completed: Boolean): Todo!
 deleteTodo(id: ID!): Todo!
 }

 type Todo {
 id: ID!
 text: String!
 completed: Boolean
 }
`;

// GraphQL Resolvers

21.8 Building a GraphQL API | 77

const resolvers = {
 Query: {
 todos: () => todos,
 todo: (parent, args) => {
 return todos.find(todo => todo.id === args.id);
 }
 },
 Mutation: {
 newTodo: (parent, args) => {
 const todo = {
 id: String(todos.length + 1),
 text: args.text,
 completed: false
 };

 todos.push(todo);
 return todo;
 },

 updateTodo: (parent, args) => {
 const todoIndex = todos.findIndex(todo => todo.id === args.id);
 const todo = {
 id: args.id,
 text: args.text || todos[todoIndex].text,
 completed: args.completed || todos[todoIndex].completed
 };

 todos[todoIndex] = todo;
 return todo;
 },
 deleteTodo: (parent, args) => {
 const deletedTodo = todos.find(todo => todo.id === args.id);
 todos = todos.filter(todo => todo.id !== args.id);
 return deletedTodo;
 }
 }
};

// Apollo + Express server setup
const server = new ApolloServer({ typeDefs, resolvers });
server.applyMiddleware({ app, path: '/' });
app.listen({ port }, () => console.log(`Listening on port ${port}!`));

In the above example, I’m using an in-memory data store. When building an API,
you will most likely want to connect to a database. To do so, you can reach for a
library such as Sequelize (for SQL databases), Mongoose (for MongoDB), or an
online data store such as Firebase.

The defined queries return data directly from the API, while the mutations allow us
to perform changes to the data, such as create a new item, update an item, or delete
an item.

78 | Chapter 21: Building Web Applications with Express

About the Authors
Adam D. Scott is an engineering leader, web developer, educator, and artist based in
Connecticut. He has worked at the crossroads of technology and education for over a
decade, teaching and writing curriculum on a range of technical topics. This is his
seventh book.

Matthew MacDonald is a tech writer and long-ago Microsoft MVP who’s written
enough heavy books to prop open all the doors in his house. Visit his website to learn
about his free JavaScript book for kids, or to follow his semi-regular hot-takes pro‐
gramming publication, Young Coder.

Shelley Powers has been working with, and writing about, web technologies—from
the first release of JavaScript to the latest graphics and design tools—for more than 12
years. Her recent O’Reilly books have covered the semantic web, Ajax, JavaScript, and
web graphics. She’s an avid amateur photographer and web development aficionado,
who enjoys applying her latest experiments on her many websites.

Colophon
The bird on the cover of JavaScript Cookbook is a little egret (Egretta garzetta). This
small white heron, the smallest and most common in Singapore, is a lot like the new
world snowy egret. Its original breeding distribution included the large inland and
coastal wetlands in warm temperate parts of Europe, Asia, Africa, Taiwan, and Aus‐
tralia. Little egrets in warmer locations are permanent residents, while the northern
birds migrate to Africa and southern Asia.

Adult little egrets are 55–65 cm long with an 88–106 cm wingspan and weigh 350–
550 grams. Their plumage is all white. They have long black legs, yellow feet, and slim
black bills. In the breeding season, adults have two long nape plumes, gauzy plumes
on their backs and breasts, and red or blue skin between their bills and eyes.

Little egrets are lively hunters with a wide variety of techniques: they patiently stalk
prey in shallow waters; stand on one leg and stir the mud with the other to scare up
prey; and stand on one leg and wave the other foot over the water’s surface as a lure.
They eat fish, insects, amphibians, crustaceans, and reptiles. They nest in colonies on
platforms of sticks in trees or shrubs, reed beds, or bamboo groves, often with other
wading birds. Many of the animals on O’Reilly covers are endangered; all of them are
important to the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from Cassell’s Natural History. The cover fonts are Gilroy Semibold and Guardian
Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

https://prosetech.com

	Cover
	Couchbase
	Copyright
	Table of Contents
	Foreword
	Chapter 17. Node Basics
	1.1 Managing Node Versions with Node Version Manager
	Problem
	Solution
	Discussion

	1.2 Responding to a Simple Browser Request
	Problem
	Solution
	Discussion

	1.3 Interactively Trying Out Node Code Snippets with REPL
	Problem
	Solution
	Discussion
	Extra: Wait a Second, What Global Object?

	1.4 Reading and Writing File Data
	Problem
	Solution
	Discussion
	Advanced

	1.5 Getting Input from the Terminal
	Problem
	Solution
	Discussion
	See Also

	1.6 Getting the Path to the Current Script
	Problem
	Solution
	Discussion

	1.7 Working with Node Timers and Understanding the Node Event Loop
	Problem
	Solution
	Discussion

	Chapter 18. Node Modules
	2.1 Searching for a Specific Node Module via npm
	Problem
	Solution
	Discussion

	2.2 Converting Your Library into a Node Module
	Problem
	Solution
	Discussion
	See Also

	2.3 Taking Your Code Across Module Environments
	Problem
	Solution
	Discussion
	See Also

	2.4 Creating an Installable Node Module
	Problem
	Solution
	Discussion
	Extra: The README File and Markdown Syntax

	2.5 Writing Multiplatform Libraries
	Problem
	Solution
	Discussion

	2.6 Unit Testing Your Modules
	Problem
	Solution
	Discussion

	Chapter 21. Building Web Applications with Express
	3.1 Using Express to Respond to Requests
	Problem
	Solution
	Discussion

	3.2 Using the Express-Generator
	Problem
	Solution
	Discussion

	3.3 Routing
	Problem
	Solution
	Discussion

	3.4 Working with OAuth
	Problem
	Solution
	Discussion

	3.5 OAuth 2 User Authentication with Passport.js
	Problem
	Solution
	Discussion

	3.6 Serving Up Formatted Data
	Problem
	Solution
	Discussion

	3.7 Building a RESTful API
	Problem
	Solution
	Discussion

	3.8 Building a GraphQL API
	Problem
	Solution
	Discussion

	About the Authors

