

Q3 2019

By Artsiom Yudovin, Data Engineer

 Uladzislau Kaminski, Senior Software Engineer

This 51-page report compares the SQL, N1QL, and MongoDB query

languages across 9 business scenarios and 7 metrics.

An Analysis of Database Query Languages in MySQL,

Couchbase Server, and MongoDB

2

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

Table of Contents

1. INTRODUCTION ... 3

2. KEY FINDINGS ... 3

3. SCENARIOS .. 8

3.1. Meeting customers .. 8
3.2. Regional sales management ..12
3.3. Sales activities ...16
3.4. Sales organizations ..20
3.5. A sales task report ..26
3.6. A skill set report ..31
3.7. Search contacts ...35
3.8. Calling Google Natural Language API ..44
3.9. Search criteria ..46

4. CONCLUSION ... 50

5. ABOUT THE AUTHORS .. 50

Featured figures:

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers

3

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

1. Introduction

All of today’s online activities—from browsing the news, interacting on social media, looking for a
product, booking a flight, or making a purchase—have been made possible by the recent innovations
in database technology. The applications that support these activities are now operating at speeds
and throughput levels rarely seen before. Organizations no longer rely on a single database vendor to
meet all their needs. Instead, databases are specialized for different uses, such as streaming,
analytics, or structured and unstructured data processing. These databases can be in-memory,
deployed to the cloud, and replicated across multiple geographical regions for high availability,
improved latency, or specific security needs. The most recent DBTA report has over 28 database
categories that customers can choose from to get the best fit.

All the databases out there share a common objective, which is to provide the most efficient data
manipulation mechanism, so applications can efficiently query the data being managed. A traditional
relationship database management systems (RDBMSes), such as Oracle, SQL Server, or DB2, use
SQL as a standard to access data. However, most of the NoSQL databases rely on a proprietary
language or APIs.

This report will highlight how SQL remains the language being emulated by leading NoSQL
databases, such as MongoDB and Couchbase. MongoDB provides a MongoDB query, an API
approach that allows users to filter, join, aggregate, order, and project the query result. Couchbase
uses the N1QL language to extend ANSI SQL, a standard for the SQL language, to achieve the same
goals.

This report provides a comparative analysis of a MongoDB query, the N1QL language, and the SQL
language using MySQL as a reference for it. Each query language is then tested against nine
business scenarios, ranging from simple queries to complex aggregations that use a simple
enterprise activity management data set. For each scenario, the three languages are rated against
the same set of criteria to compare their relative power and simplicity.

A note on methodology: for criteria based on measurable data, scores were applied based on a real-
world experience using the products under evaluation, as well as on regularly conducted benchmarks.
For criteria based on qualitative data (e.g., installation and maintenance procedure), scores were
applied based on an in-depth review of the documentation, feedback from solution vendors and
engineering teams at enterprises, and our own development and production experience.

All the examples of queries and database dumps, which can help to deploy and run all the scenarios
from this report can be found in this GitHub repository.

2. Key findings

There were several points of interest uncovered during the comparative analysis. These include
fundamental distinctions between the three database languages in how their queries are structured,
as well as differences in query syntax and efficiency.

The first aspect that stood out in this analysis is the difference between the declarative approach of
MySQL and N1QL compared to the procedural approach of a MongoDB query.

A declarative versus procedural approach

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
http://www.dbta.com/Editorial/News-Flashes/The-2019-DBTA-Readers-Choice-Awards-Winners-133013.aspx
https://github.com/Altoros/Query-Comparison

4

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

The declarative approaches of MySQL and N1QL allow users to express a desired outcome, while a
database server will decide how to obtain that result. A MongoDB query allows a user to write a
pipeline code for how the result should be achieved, which is implicitly specified by the different
stages in the aggregation pipeline. Scenarios 3.1–3.3 (described in the sections below) show how a
MongoDB query can be quite effective with the procedural approach, enabling a user to explicitly set

the order of an operation–particularly for filtering with $match and then a collection join with

$lookup. Here, the order of operations can significantly alter a query’s response time.

In the case of MySQL and N1QL, a user does not have to specify the order. This declarative
approach relies on a database query optimizer to understand that it is more efficient to perform a
filtering operation before a join operation. This feature is well supported by the Couchbase query
optimization.

The second salient observation in the report is the syntax of MySQL and N1QL compared to that of a
MongoDB query.

A SQL standard versus a proprietary API

When it comes to comparing the readability or skill level between the two implementations, opinions
can be somewhat subjective. There are those who prefer the procedural nature of a MongoDB query.
Becoming proficient in the MongoDB API is no more challenging than it is for MySQL as both take
time to master. However, many developers are already proficient in MySQL, because it has been
around for more than four decades. This familiarity could be a factor with organizations that want to
leverage their existing skills or want an easier time finding new developers with the skill sets needed.

The third point of emphasis in this comparative analysis is how the queries are processed in each of
the implementations.

A number of application-to-server round trips

With both MySQL and N1QL, the query is processed entirely in a database server. In effect, only a
single submission of the MySQL or N1QL query to the server is needed for the result to come back.
With MongoDB, more complex queries (Scenarios 3.4, 3.5, and 3.7, which are described in the
sections below) would require as many as five trips between the client application and the MongoDB
server. This can significantly slow down the overall response time and also requires more resources
in the client applications. The need to break the query down into multiple components before passing
the result into the next call would also add more complexities to the client applications.

There is also a final subtle distinction that the report was not able to show due to the complexity that
would be required in the MongoDB query’s code. This distinction is in the ability to join data sets in a
sharded collection.

Join support in a sharded collection

Couchbase’s N1QL supports all the different types of the ANSI joins. The JOIN operation can happen

on any sharded Couchbase bucket. A MongoDB query’s $lookup only works with unsharded

collections. There are two ways to overcome this limitation in a MongoDB query: code the $lookup

logic in the client application or avoid the $lookup altogether by designing a more denormalized data

model. This limitation could be a major hurdle for organizations that want to migrate their existing

RDBMS-based applications to NoSQL. A JOIN operation using Couchbase’s N1QL is agnostic to how

the underlying data is organized and managed.

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance

5

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

Figure 2.1 depicts the number of code lines in the query for each scenario included in this report. This
parameter influences most of the chosen criteria, because all the limitations and disadvantages of
query languages will increase the lines of code.

Figure 2.1 Total code lines in the query for each of the nine scenarios

The number of trips between the client application and the database server are shown in Figure 2.2.
This parameter will impact the performance of the queries, because it can lead to potentially large
amounts of data being transferred between a client and a server.

Figure 2.2 Total application-to-server round trips in each of the nine scenarios

Table 2.1 demonstrates the average marks for each database. The average mark was calculated
from the criteria result for each scenario.

Table 2.1 Average scores for each metric

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers

6

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

Criteria MySQL N1QL MongoDB query

Simplicity 8.3 8.5 6.4

Readability 9 9.1 6.8

Expressiveness 9 8.8 6.3

Flexibility 8.8 9 7.4

Skills availability 7.7 6.7 5.6

Average score 8.6 8.4 6.5

Table 2.2 shows two physical criteria. The (l / t) value in each database implementation

represents:

 l is the total number of code lines in the query. This parameter influences most of the chosen

criteria, because all the limitations and disadvantages of query languages will increase the
number of code lines.

 t is the number of trips between a client app and a database server. This parameter will impact

the performance of the queries, because it can lead to potentially large amounts of data being
transferred between a client and a server.

Table 2.2 Lines of code and total application-to-server round trips in each scenario

Scenario Query description MySQL N1QL MongoDB
query

3.1. Meeting
customers

To prepare for customer meetings that I will be
attending next week, I want to get a list of all
the customers to attend the meetings and their
contacts.

14 / 1 14 / 1 38 / 1

3.2. Regional
sales
management

I am a Regional Sales Manager for the C-Suite
Sellers territory. I want to get all accounts assigned
to this territory and the account team members.

13 / 1 14 / 1 35 / 1

3.3. Sales
activities

Determine the top 10 industries from our customers
based on the 2018 sales activities.

7 / 1 7 / 1 27 / 1

3.4. Sales
organizations

I run a sales organization for the Aggressive
Achievers territory. I want to find out how much time
we spent talking to the accounts assigned to this
territory for Q3FY19.

20 / 1 22 / 1 103 / 3

3.5. A sales task
report

This scenario shows how the number of sales-
related tasks have changed a month over a month
during the year 2018.

20 / 1 22 / 1 71 / 2

3.6. A skill set
report

The company is performing an analysis on the sales
team skill sets/roles in the current sales

N/A 27 / 1 76 / 1

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance

7

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

organization. It needs to identify all the
territories where there is only a single person with a
specific role/skill set, and that the territory handles
more than five accounts.

3.7. Search
contacts

A query to review all the presentations that we have
conducted with the customers in CY19Q4. The
query needs to show the time we spent for each
meeting, the running count, and the percentage of
time for the meeting over the total time we spent
talking to the customer. Furthermore, the query
needs to calculate high_touch_rank, which is

the percentage of the customer’s contacts who
attended the meeting against the total number of
the customer’s contacts.

 N/A 23 / 1 347 / 5

3.8. Calling
Google Natural
Language API

In order to find a based on the most positive
reviews, you could read through all the reviews for
all the hotels or leverage Google Natural Language
API to analyze the sentiment of the reviews. The
query should return top 10 hotel reviews based on
the sentiment score.

N/A 22 / 1 N/A

3.9. Search
criteria

Our goal is to identify the customer accounts and
their related contacts, where a particular topic has
been discussed. The search criteria may include the
following information partially or in full: a meeting
title, a meeting date range, customer contact
details, sales team member details (participants),
and a customer name.

24 / 1 21 / 1 26 / 1

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
https://cloud.google.com/natural-language/
https://cloud.google.com/natural-language/

8

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

3. Scenarios

In this section, each of the nine business scenarios are illustrated through relational and JSON
models. Additionally, query implementations for each database language are provided along with
concluding remarks and summary for metrics.

3.1. Meeting customers

To prepare for customer meetings that I will be attending next week, I want to get a list of all the
customers to attend the meetings and their contacts.

Figure 3.1.1 demonstrates a relational model for the current scenario.

Figure 3.1.1 A relational model for the Meeting customers scenario

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
http://www.altoros.com/research-papers

9

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

Figure 3.1.2 demonstrates a JSON model for the current scenario.

Figure 3.1.2 A JSON model for the Meeting customers scenario

The current scenario can be achieved with all the three languages.

The query described in Listing 3.1.1 is an implementation of the current scenario for MySQL.

Listing 3.1.1 An SQL implementation for the Meeting customers scenario

SELECT a.id,

 a.title meeting,

 c.name customer,

 a.startdate,

 cn.name contact_name,

 cn.title contact_title,

 cn.email contact_email

FROM activity a

 INNER JOIN account c ON (a.accid = c.id)

 INNER JOIN contact_account cn ON (c.id = cn.accid)

 INNER JOIN participants p ON (a.id = p.actid)

WHERE a.activitytype = 'Appointment'

 AND a.startdate BETWEEN '2019-01-01' AND '2019-01-31'

 AND p.userid=’user73’

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
http://www.altoros.com/research-papers

10

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

The query described in Listing 3.1.2 is an implementation of the current scenario for N1QL.

Listing 3.1.2 An N1QL implementation for the Meeting customers scenario

SELECT a.id,

 a.title meeting,

 c.name customer,

 a.startdate,

 cn.name contact_name,

 cn.title contact_title,

 cn.email contact_email
FROM crm a

 INNER JOIN crm c ON (a.accid = c.id AND c.type = 'account')

 UNNEST c.contacts AS cn

WHERE a.type = 'activity'

 AND a.activitytype = 'Appointment'

 AND a.startdate BETWEEN '2019-01-01' AND '2019-01-31'

 AND ANY p IN a.participants SATISFIES p.userid = 'usr73' END

The query described in Listing 3.1.3 is an implementation of the current scenario for a MongoDB
query.

Listing 3.1.3 A MongoDB query implementation for the Meeting customers scenario

db.activity.aggregate([

 {

 $match: {

 $and: [

 { "participants.userid": { $eq: 'usr73' } },

 { activityType: { $eq: 'Appointment' } },

 {

 startDate: {

 $gt: '2019-01-01',

 $lt: '2019-01-31'

 }

 }

]

 }

 },

 {

 $lookup:

 {

 from: "account",

 localField: "accid",

 foreignField: "id",

 as: "account_docs"Mongo

 }

 },
 { $match: { "account_docs": { $ne: [] } } },

 { $unwind: "$account_docs" },

 { $unwind: "$account_docs.contacts" },

 {

 $project: {

 _id: 0, title: 1,

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance

11

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

 startDate: 1,

 accountname: "$account.name",

 contactname: "$account_docs.contacts.name",

 contacttitle: "$account_docs.contacts.title",

 email: "$account_docs.contacts.email"

 }

 }

]).pretty();

Summary

Using the queries above, all three databases get the same results. This scenario is simple, and the
business value of this query is obvious. Each database provides all the necessary functionality for
implementation.

N1QL and a MongoDB query also support the join operation as MySQL. N1QL provides the JOIN

operation, while a MongoDB query has LOOKUP. Based on the nature of the databases, N1QL and a

MongoDB query use less JOIN operations than MySQL, because N1QL and a MongoDB query are

document-oriented databases. Due to this nature, N1QL and a MongoDB query support extra

functionality, which can help to decrease the number of JOIN operations. N1QL has the UNNEST

operation, and a MongoDB query offers the UNWIND operation. The UNNEST and UNWIND operations

allow performing a join of the nested array with its parent object. This makes sense for N1QL and a
MongoDB query, because there are embedded documents in our JSON model.

This query is not difficult to achieve for each database. N1QL and a MongoDB query have fewer JOIN
operations, because they are different in nature to MySQL. A MongoDB query is also less
expressive.

Table 3.1.1 Metrics for the Meeting customers scenario

Criteria MySQL N1QL MongoDB query

Simplicity 9 9 9

Readability 10 10 10

Expressiveness 9 9 8

Flexibility 9 9 9

Skills availability 9 7 7

A number of code lines 14 14 38

A number of client/server trips 1 1 1

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance

12

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

3.2. Regional sales management

I am a Regional Sales Manager for the C-Suite Sellers territory. I want to get all the accounts
assigned to this territory and the account team members.

Figure 3.2.1 demonstrates a relational model for the current scenario.

Figure 3.2.1 A relational model for the Regional sales management scenario

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
http://www.altoros.com/research-papers

13

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

Figure 3.2.2 demonstrates a JSON model for the current scenario.

Figure 3.2.2 A JSON model for the Regional sales management scenario

The current scenario can be achieved with all three languages.

The query described in Listing 3.2.1 is an implementation of the current scenario for MySQL.

Listing 3.2.1 An SQL implementation for the Regional sales management scenario

SELECT ter.name `Territory`,

 cus.name Customer,

 u.name `Territory team member`,

 u.title `Member Title`

FROM crm.territoryteam tt

 INNER JOIN crm.territory ter ON tt.terid = ter.id

 INNER JOIN crm. `user` u ON tt.userid = u.id

 INNER JOIN crm.account cus ON ter.id = cus.terid

WHERE ter.name = 'C-Suite Sellers'

GROUP BY ter.name,

 cus.name,

 u.name,

 u.title

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
http://www.altoros.com/research-papers

14

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

The query described in Listing 3.2.2 is an implementation of the current scenario for N1QL.

Listing 3.2.2 An N1QL implementation for the Regional sales management scenario

SELECT ter.name `territory`,

 cus.name customer,

 usr.name `territory team member`,

 usr.title `member title`

FROM crm usr

 INNER JOIN crm cus ON (ANY v IN cus.team SATISFIES usr.id = v.userid END

 AND cus.type = 'account')

 INNER JOIN crm ter ON (ter.id = cus.terid AND ter.type = 'territory')

WHERE usr.type = 'user'

 AND ter.name = 'C-Suite Sellers'

GROUP BY ter.name,

 cus.name,

 usr.name,

 usr.title

The query described in Listing 3.2.3 is an implementation of the current scenario for a MongoDB
query.

Listing 3.2.3 A MongoDB query implementation for the Regional sales management scenario

db.territory.aggregate(

 { $match: { name: { $eq: 'C-Suite Sellers' } } },

 { $unwind: "$team" },

 {

 $lookup: {

 "from": "user",

 "localField": "team.userid",

 "foreignField": "id",

 "as": "teammembers"

 }

 },
 { $match: { "teammembers": { $ne: [] } } },

 { $unwind: "$teammembers" },

 {

 $lookup: {

 "from": "account",

 "localField": "id",

 "foreignField": "terid",

 "as": "terraccount"

 }

 },

 { $match: { "terraccount": { $ne: [] } } },

 { $unwind: "$terraccount" },

 {
 $group: {

 "_id": {

 terrname: "$name",

 accountname: "$terraccount.name",

 teammember: "$teammembers.name",

 membertitle: "$teammembers.title"

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance

15

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

 }

 }

 },

 { $project: { _id: 1 } },

).pretty();

Summary

To achieve this business result, data from several tables (documents) needs to be aggregated.

MySQL provides a way to combine several tables with a JOIN operator. Additional conditions can be

placed on the final table with the results using the WHERE clause. N1QL employs another approach,

since it supports the ARRAY_JOIN operation that expands the initial document with values from other

documents. Additionally, N1QL provides a way to add conditions using the SATISFIES operator. For

a MongoDB query, several LOOKUP methods can be applied to collect all the necessary information

from a document and the UNWIND operation is used to flatten the structure. The grouping operation is

similar for all databases. For these queries, it makes sense to compare the complexity of creating the
query and intermediate results structures. For MySQL, a large number of relations should be initiated,
and it makes the building process more complex. N1QL provides a way to use fewer relations and

keeps the structure easier to read. A MongoDB query does not provide the ARRAY_JOIN operation,

and the UNWIND operation leads the considerable intermediate result.

Table 3.2.1 Metrics for the Regional sales management scenario

Criteria MySQL N1QL MongoDB query

Simplicity 8 9 8

Readability 9 9 9

Expressiveness 9 9 8

Flexibility 9 9 9

Skills availability 9 8 8

A number of code lines 13 14 35

A number of client/server trips 1 1 1

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance

16

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

3.3. Sales activities

Determine the top 10 industries from our customers based on the 2018 sales activities.

Figure 3.3.1 demonstrates a relational model for the current scenario.

Figure 3.3.1 Relational model for the Sales activities scenario

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
http://www.altoros.com/research-papers

17

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

Figure 3.3.2 demonstrates a JSON model for the current scenario.

Figure 3.3.2 JSON model for the Sales activities scenario

The current scenario can be achieved with all three languages.

The query described in Listing 3.3.1 is an implementation of the current scenario for MySQL.

Listing 3.3.1 An SQL implementation for the Sales activities scenario

SELECT ac.industry,

 SUM(CASE WHEN a.activitytype = 'Task' THEN 1 ELSE 0 END) task,

 SUM(CASE WHEN a.activitytype = 'Appointment' THEN 1 ELSE 0 END) appts

FROM crm.activity a

 INNER JOIN crm.account ac ON (a.accid = ac.id)

WHERE a.startdate BETWEEN '2018-10-01' AND '2018-12-31'

GROUP BY ac.industry

The query described in Listing 3.3.2 is an implementation of the current scenario for N1QL.

Listing 3.3.2 An N1QL implementation for the Sales activities scenario

SELECT ac.industry,

 SUM(CASE WHEN a.activityType = 'Task' THEN 1 ELSE 0 END) task,

 SUM(CASE WHEN a.activityType = 'Appointment' THEN 1 ELSE 0 END) appts

FROM crm.activity a

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
http://www.altoros.com/research-papers

18

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

 INNER JOIN crm.account ac ON a.accid = ac.id

WHERE a.startDate BETWEEN '2018-10-01' AND '2018-12-31'

GROUP BY ac.industry

The query described in Listing 3.3.3 is an implementation of the current scenario for a MongoDB
query.

Listing 3.3.3 A MongoDB query implementation for the Sales activities scenario

db.activity.aggregate(

 { $match: { startDate: { $gt: '2018-01-01', $lt: '2018-12-31' } } },

 {

 $lookup: {

 from: "account",

 localField: "accid",

 foreignField: "id",

 as: "account_docs"

 }

 },

 { $match: { "account_docs": { $ne: [] } } },

 { $unwind: "$account_docs" },

 {

 $project: {

 item: 1,

 task: { $cond: { if: { $eq: ["$activityType", "Task"] }, then: 1,

else: 0 } },

 appt: { $cond: { if: { $eq: ["$activityType", "Appointment"] },

then: 1, else: 0 } }

 }

 },

 {
 $group: {

 _id: "$account_docs.industry",

 tasks: { $sum: "$task" },

 appointments: { $sum: "$appt" }

 }

 }

);

Summary

This scenario consists of two main parts: aggregation functions and conditions. In aggregation, the
function has to be a sum calculation. In conditions, two activity types should be included in the result:
Appointment and Task.

Each database supports functionality for executing this scenario. MySQL and N1QL are similar and
provide SUM as an aggregation function for our query and CASE for conditioning. A MongoDB query

has operators for achieving the same results: SUM and COND. These things are similar to the MySQL

functionalities, but the process of using these functions is different, because a MongoDB query is not
an SQL-like language. Therefore, it should be noted that in this case, a MongoDB query is more
complicated due to the nature of the language.

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance

19

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

This scenario is not difficult to accomplish in each of the database languages. N1QL and MySQL are
similar owing to N1QL being an SQL-like language. A MongoDB query achieves the same result as
N1QL and MySQL. However, a MongoDB query has less expressiveness due to the nature of the
language.

Table 3.3.1 Metrics for the Sales activities scenario

Criteria MySQL N1QL MongoDB query

Simplicity 9 9 9

Readability 10 10 10

Expressiveness 9 9 8

Flexibility 9 9 9

Skills availability 9 7 7

A number of code lines 7 7 27

A number of client/server trips 1 1 1

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance

20

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

3.4. Sales organizations

I run a sales organization for the Aggressive Achievers territory. I want to find out how much time we
spent talking to the accounts assigned to this territory for Q3FY19.

Figure 3.4.1 demonstrates a relational model for the current scenario.

Figure 3.4.1 A relational model for the Sales organizations scenario

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
http://www.altoros.com/research-papers

21

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

Figure 3.4.2 demonstrates a JSON model for the current scenario.

Figure 3.4.2 A JSON model for the Sales organizations scenario

The current scenario can be achieved with all three languages.

The query described in Listing 3.4.1 is an implementation of the current scenario for MySQL.

Listing 3.4.1 An SQL implementation for the Sales organizations scenario

SELECT cus.name Customer,

 cus.industry Industry,

 usr.name Owner,

 COUNT(1) NumOfMeetings,

 SUM(act.duration) `Time Spent`,

 ROUND(PERCENT_RANK()

 OVER (ORDER BY SUM(act.duration)),2) `PctRank`

FROM crm.activity act

 INNER JOIN crm.account cus ON act.accid = cus.id

 INNER JOIN crm.`user` usr ON cus.owner = usr.id

 INNER JOIN (

 SELECT thl.id

 FROM crm.territory_hier_level thl

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
http://www.altoros.com/research-papers

22

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

 WHERE hl.parent = 'ter3'

) ter ON cus.terid = ter.id

WHERE act.activityType = 'Appointment'

 AND act.startDate BETWEEN '2018-10-01' AND '2018-12-31'

GROUP BY cus.name,

 cus.industry,

 usr.name;

The query described in Listing 3.4.2 is an implementation of the current scenario for N1QL.

Listing 3.4.2 An N1QL implementation for the Sales organizations scenario

SELECT cus.name Customer,

 cus.industry Industry,

 usr.name Owner,

 COUNT(1) NumOfMeetings,

 SUM(TO_NUMBER(act.duration)) `Time Spent`,

 ROUND(PERCENT_RANK()

 OVER (ORDER BY SUM(TO_NUMBER(act.duration))),2) `PctRank`

FROM crm act

 INNER JOIN crm cus ON (act.accid = cus.id AND cus.type = 'account')

 INNER JOIN crm usr ON(cus.owner = usr.id AND usr.type = 'user')

 INNER JOIN (

 SELECT thl.id

 FROM crm thl

 WHERE thl.type = '_territory_hier_level'

 AND thl.parent = 'ter3'

) ter ON cus.terid = ter.id

WHERE act.type = 'activity'

 AND act.activityType = 'Appointment'

 AND act.startDate, 'month' BETWEEN ‘2018-10-01’ AND ‘2018-12-31’

GROUP BY cus.name,

 cus.industry,

 usr.name

The query described in Listing 3.4.3 is an implementation of the current scenario for a MongoDB
query.

Listing 3.4.3 A MongoDB query implementation for the Sales organizations scenario

var territory_tier3 = db.territory.aggregate([

 {

 $graphLookup:

 {

 from: "territory",

 startWith: "$parentid",

 connectFromField: "parentid",

 connectToField: "id",

 as: "territoryHierarchy"

 }

 },

 { $unwind: "$territoryHierarchy" },

 { $match: { "territoryHierarchy.id": "ter3" } }

]).map(function (ter) {

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance

23

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

 return ter.id;

})

var listOfTimeSpent = db.activity.aggregate([

 { $match: { "activityType": "Appointment" } },

 { $match: { "startDate": { $gt: '2018-10-01', $lt: '2018-12-31' } } },

 {

 $lookup: {

 from: "account",

 localField: "accid",

 foreignField: "id",

 as: "account_docs"

 }

 },

 { $match: { "account_docs": { $ne: [] } } },

 { $unwind: "$account_docs" },

 {

 $lookup: {

 from: "user",

 localField: "account_docs.owner",

 foreignField: "id",

 as: "ad_user"

 }

 },

 { $match: { "ad_user": { $ne: [] } } },

 { $match: { "account_docs.terid": { $in: territory_tier3 } } },

 {

 $group:

 {

 _id: {

 customer: "$account_docs.name",

 industry: "$account_docs.industry",

 owner: "$account_docs.owner"

 },

 numberOfMeetings: { $sum: 1 },

 timeSpent: { $sum: "$actduration" }

 }

 },

 { $sort: { timeSpent: 1 } },

 { $group: { _id: null, ts: { "$addToSet": "$timeSpent" } } },

 { $unwind: "$ts" },

 { $sort: { ts: 1 } }

]).map(function (t) {

 return t.ts;

})

db.activity.aggregate([

 { $match: { "activityType": "Appointment" } },

 { $match: { "startDate": { $gt: '2018-10-01', $lt: '2018-12-31' } } },

 {
 $lookup: {

 from: "account",

 localField: "accid",

 foreignField: "id",

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance

24

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

 as: "account_docs"

 }

 },

 { $match: { "account_docs": { $ne: [] } } },

 { $unwind: "$account_docs" },

 {

 $lookup: {

 from: "user",

 localField: "account_docs.owner",

 foreignField: "id",

 as: "ad_user"

 }

 },

 { $match: { "ad_user": { $ne: [] } } },

 { $match: { "account_docs.terid": { $in: territory_tier3 } } },

 {

 $group:

 {

 _id: {

 customer: "$account_docs.name",

 industry: "$account_docs.industry",

 owner: "$account_docs.owner"

 },

 numberOfMeetings: { $sum: 1 },

 timeSpent: { $sum: "$actduration" }

 }

 },

 { $addFields: { pctRank: { $indexOfArray: [listOfTimeSpent,

"$timeSpent"] } } },

 { $addFields: { pctRank: { $divide: ["$pctRank",

listOfTimeSpent.length] } } },

 {

 $addFields:

 { pctRank:

 { '$divide': [{ '$trunc': { '$add': [{ '$multiply':

['$pctRank', 100] }, 0.5] } }, 100] } }

 }

])

Summary

In this scenario, two functionalities—hierarchy and window—should be noted.

The chosen territory is ter3. This means the result should only include territories where the parent is
ter3. For MySQL and N1QL, a special table is created for storing territory hierarchy. However, a

MongoDB query does not require this extra table as $graphLookup can be used for building a

hierarchy within the query.

Another important point in this scenario is a percent rank. It is a window function, which calculates

percentile. N1QL and MySQL support it by default with percent_rank(). A MongoDB query does

not support it, so another method should be chosen as a replacement. Subqueries using var are

suitable in this case. Unfortunately, this leads to duplications in the query.

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance

25

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

This scenario is achievable for each database. MySQL and N1QL have good readability and less
complexity in comparison to a MongoDB query. In its turn, a MongoDB query has a lot of duplication
in the query, because it does not support percentile calculation. Despite the fact that a MongoDB
query is complex, it does not need to support an extra table for territory hierarchy. It is also worth
mentioning that N1QL and MySQL can achieve the desired result with a single query, but a MongoDB
query cannot achieve the same result using a single query due to functional limitations.

Table 3.4.1 Metrics for the Sales organizations scenario

Criteria MySQL N1QL MongoDB query

Simplicity 8 8 2

Readability 9 9 1

Expressiveness 9 9 1

Flexibility 9 9 4

Skills availability 6 6 1

A number of code lines 20 22 103

A number of client/server trips 1 1 3

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance

26

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

3.5. A sales task report

This scenario shows how the number of sales-related tasks have changed a month over a month
during the year of 2018.

Figure 3.5.1 demonstrates a relational model for the current scenario.

Figure 3.5.1 A relational model for the Sales task report scenario

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
http://www.altoros.com/research-papers

27

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

Figure 3.5.2 demonstrates a JSON model for the current scenario.

Figure 3.5.2 A JSON model for the Sales task report scenario

The current scenario can be achieved with all three languages.

The query described in Listing 3.5.1 is an implementation of the current scenario for MySQL.

Listing 3.5.1 An SQL implementation for the Sales task report scenario

WITH current_period_task AS (

 SELECT DATE_FORMAT(a.startDate, '%Y-%m') month,

 COUNT(1) current_period_task_count

 FROM crm.activity a

 WHERE a.activityType = 'Task'

 AND DATE_FORMAT(a.startDate, '%Y') = 2018

 GROUP BY DATE_FORMAT(a.startDate, '%Y-%m')

),

last_period_task AS (

 SELECT x.month,

 x.current_period_task_count,

 LAG(x.current_period_task_count)

 OVER (ORDER BY x.month) last_period_task_count

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
http://www.altoros.com/research-papers

28

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

 FROM current_period_task x

)

SELECT b.month,

 b.current_period_task_count,

 ROUND(((b.current_period_task_count - b.last_period_task_count

) / b.last_period_task_count), 2) MoMChg

FROM last_period_task AS b;

The query described in Listing 3.5.2 is an implementation of the current scenario for N1QL.

Listing 3.5.2 An N1QL implementation for the Sales task report scenario

WITH current_period_task AS (

 SELECT DATE_TRUNC_STR(a.startDate, 'month') month,

 COUNT(1) current_period_task_count

 FROM crm a

 WHERE a.type = 'activity'

 AND a.activityType = 'Task'

 AND DATE_PART_STR(a.startDate, 'year') = 2018

 GROUP BY DATE_TRUNC_STR(a.startDate, 'month')

),

last_period_task AS (

 SELECT x.month,

 x.current_period_task_count,

 LAG(x.current_period_task_count)

 OVER (ORDER BY x.month) last_period_task_count

 FROM

 current_period_task x

)

SELECT b.month,

 b.current_period_task_count,
 ROUND(((b.current_period_task_count - b.last_period_task_count

) / b.last_period_task_count), 2) MoMChg

FROM last_period_task AS b

The query described in Listing 3.5.3 is an implementation of the current scenario for a MongoDB
query.

Listing 3.5.3 A MongoDB query implementation for the Sales task report scenario

var res = db.activity.aggregate([

 {
 $project: {

 activityType: 1,

 month: { $month: { $dateFromString: { dateString: "$startDate" } }

},

 year: { $year: { $dateFromString: { dateString: "$startDate" } } }

 }

 },

 { $match: { $and: [{ "activityType": "Task" }, { "year": { $eq: 2018 } }]

} },

 {

 $group: {

 _id: { $dateFromParts: { year: "$year", month: "$month" } },

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance

29

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

 count: { $sum: 1 }

 }

 },

 { $sort: { _id: 1 } }

]).map(function (el) { return el.count });

db.activity.aggregate([

 {

 $project: {

 activityType: 1,

 month: { $month: { $dateFromString: { dateString: "$startDate" } } },

 year: { $year: { $dateFromString: { dateString: "$startDate" } } }

 }

 },

 {

 $match: {

 $and: [

 { "activityType": "Task" },

 { "year": { $eq: 2018 } }

]

 }

 },

 {

 $group: {

 _id: { $dateFromParts: { year: "$year", month: "$month" } },

 count: { $sum: 1 }

 }

 },

 {

 $project: {

 _id: 1,

 count: 1,

 MoMChg: {

 $cond: [

 { $ne: [{ $month: "$_id" }, 1] },

 {

 $divide: [

 { $subtract: ["$count", { $arrayElemAt: [res, { $subtract: [{

$month: "$_id" }, 2] }] }] },

 { $arrayElemAt: [res, { $subtract: [{ $month: "$_id" }, 2] }]

}]

 }, null]

 }

 }

 },

 { $sort: { _id: 1 } },

 {

 $project: {

 _id: 0,

 month: { $concat: [{ $toString: { $year: "$_id" } }, "-", {

$toString: { $month: "$_id" } }] },

 current_period_task_count: "$count",

 MoMChg: {

 '$divide': [

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance

30

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

 { '$trunc':

 { '$add':

 [{ '$multiply': ['$MoMChg', 100] }, 0.5]

 }

 }, 100]

 }

 }

 }

Summary

In this scenario, the first function in the query sets a date from a string. This is needed in order to filter
results by year and to combine by month. A MongoDB query has the most complex way since the
String should be converted to Date, and then the month and year can be extracted. Other query
languages provide seamless ways to work with the date in a usual format.

N1QL and MySQL support the WITH operator to store intermediate request results. On the other

hand, a MongoDB query uses variables, which can be initiated with intermediate values. Operations
like grouping and ordering have the same complexity and readability for all queries.

The LAG function is used to compare the values for each month with the previous one. Both N1QL

and MySQL support window functions, making it simple to achieve this comparison. The only way to
achieve this result in a MongoDB query is by creating an additional request and using it in the main
part of query.

The next important point is arithmetic operations. N1QL and MySQL have the most readability in this
case, while Mongo is more complex. The last step is rounding to two decimal places. MySQL and

N1QL provide the ROUND function. Mongo does not support rounding, so some workaround should be

applied.

MySQL and N1QL queries look pretty similar. Both support window functions that make the query
easier to read and support. MongoDB query looks more complex and uses some workarounds to
achieve the same result but with a lower readability. The method of applying arithmetic operations
and the difficulties during roundings seem to be the biggest drawbacks in this scenario.

Table 3.5.1 Metrics for the Sales task report scenario

Criteria MySQL N1QL MongoDB query

Simplicity 9 9 7

Readability 8 8 7

Expressiveness 9 9 8

Flexibility 9 9 7

Skills availability 9 1 2

A number of code lines 20 22 71

A number of client/server trips 1 1 2

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance

31

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

3.6. A skill set report

The company is performing an analysis on the sales team skill sets/roles in the current sales
organization. It needs to identify all the territories where there is only a single person with a specific
role/skill set and that the territory handles more than five accounts.

Figure 3.6.1 demonstrates a JSON model for the current scenario.

Figure 3.6.1 A JSON model for the Skill set report scenario

The current scenario can be achieved with N1QL and a MongoDB query.

The query described in Listing 3.6.1 is an implementation of the current scenario for N1QL.

Listing 3.6.1 An N1QL implementation for the Skill set report scenario

SELECT tar.territory,

 rroles

FROM

 (

 SELECT terrs.territory,

 SUM(custcount) numofcusts,

 ARRAY_FLATTEN(ARRAY_AGG(terrs.combined_roles), 1) allroles

 FROM

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
http://www.altoros.com/research-papers

32

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

 (

 SELECT t.name territory,

 COUNT(c.id) custcount,

 ARRAY_CONCAT(c.team [*].`role`, t.team [*].`role`) combined_roles

 FROM account c

 INNER JOIN territory t ON (c.terid = t.id AND t.type =

'territory')
 WHERE c.type = 'account'

 GROUP BY t.name,

 c.team [*].`role`,

 t.team [*].`role`

) terrs

 GROUP BY terrs.territory

 HAVING SUM(custcount) >= 5

) tar

 UNNEST tar.allroles rroles

GROUP BY tar.territory,

 rroles

HAVING COUNT(1) = 1

ORDER BY tar.territory

The query described in Listing 3.6.2 is an implementation of the current scenario for a MongoDB
query.

Listing 3.6.2 A MongoDB query implementation for the Skill set report scenario

db.account.aggregate([

 { $match: { "type": "account" } },

 {

 $lookup: {

 from: "territory",

 localField: "terid",

 foreignField: "id",

 as: "territories"

 }

 },

 { $match: { "territories": { $ne: [] } } },

 { $project: { id: 1, team: 1, territory: { "$arrayElemAt":

["$territories", 0] } } },

 { $match: { "territory.type": "territory" } },

 {

 $project: {

 id: 1,

 territory: "$territory.name",

 team: { $map: { input: "$team", as: "member", in: "$$member.role" }

},

 territoryTeam: { $map: { input: "$territory.team", as: "member", in:

"$$member.role" } }

 }

 },

 {

 $group: {

 _id: {

 territory: "$territory",

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance

33

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

 accountTeam: "$team",

 territoryTeam: "$territoryTeam"

 },

 count: { $sum: 1 }

 }

 },

 {
 $project: {

 _id: {

 territory: "$_id.territory",

 combined_roles: { "$concatArrays": ["$_id.accountTeam",

"$_id.territoryTeam"] }

 },

 count: 1

 }

 },

 {

 $group: {

 _id: { territory: "$_id.territory", },
 allroles: { $push: "$_id.combined_roles" },

 custcount: { $sum: "$count" }

 }

 },

 { $match: { custcount: { $gte: 5 } } },

 {

 $project: {

 _id: 1,

 allroles: {

 $reduce:

 { input: "$allroles", initialValue: [], in: { $concatArrays:

["$$value", "$$this"] } }

 }

 }

 },

 { $unwind: "$allroles" },

 {

 $group: {

 _id: {

 territory: "$_id.territory",

 rroles: "$allroles"

 },

 count: { $sum: 1 }

 }

 },

 { $match: { count: { $eq: 1 } } },

 {

 $project: {

 _id: 0,

 territory: "$_id.territory",

 rroles: "$_id.rroles"

 }

 },

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance

34

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

 { $sort: { "territory": 1 } }])

Summary

The intermediate goal of this query is to combine account team members with territories by setting
conditions on the type of account and the type of territory.

While getting the results, arrays that contains information about team members should be
concatenated. The MongoDB query and N1QL approaches are similar. Both have readable methods
for uniting arrays.

Another array operation that is used here is flattening the structure. N1QL provides

ARRAY_FLATTEN,while Mongo uses reduce operation. This approach is not as simple as

ARRAY_FLATTEN but it achieves the same result.

To expand results for each role N1QL uses UNNEST and Mongo uses the UNWIND operation. In this

context, both look similar and accomplish the same result.
Mongo and N1QL use different approaches to achieve the same result. It is difficult to compare which
is more suitable for this scenario, but readability is higher with N1QL. It is simpler to explain to
Couchbase which data should be returned. MongoDB query is longer, but it shows every step in
detail.

Table 3.6.1 Metrics for the Skill set report scenario

 Criteria MySQL (unsupported) N1QL MongoDB query

Simplicity - 9 8

Readability - 9 8

Expressiveness - 9 8

Flexibility - 9 9

Skills availability - 7 7

A number of code lines - 27 76

A number of client/server trips - 1 1

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance

35

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

3.7. Search contacts
A query to review all the presentations that we have conducted with customers in CY19Q4. The query

needs to show the time we spent for each meeting, the running count, and the percentage of time for
the meeting over the total time we spent talking to the customer. Furthermore, the query needs to

calculate a high_touch_rank, which is the percentage of the customer’s contacts who attended the

meeting against the total number of the customer’s contacts.

Figure 3.7.1 demonstrates a JSON model for the current scenario.

Figure 3.7.1 A JSON model for the Search contacts scenario

The current scenario can be achieved with N1QL and a MongoDB query.

The query described in Listing 3.7.1 is an implementation of the current scenario for N1QL.

Listing 3.7.1 An N1QL implementation for the Search contacts scenario

SELECT c.name,

 a.title,

 a.actduration,

 a.startDate,

 SUM(a.actduration)

 OVER (PARTITION BY c.name ORDER BY c.name, a.startDate) running_total,

 TRUNC(100*(a.actduration/ SUM(a.actduration)

 OVER(PARTITION BY c.name))) pct_of_total_time,

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
http://www.altoros.com/research-papers

36

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

 RANK() OVER (PARTITION BY c.name ORDER BY

 (ARRAY_COUNT(a.contacts) / ARRAY_COUNT(c.contacts))DESC) hightouch_rank

FROM crm a

 INNER JOIN crm c ON (a.accid = c.id AND c.type = 'account')

WHERE a.type = 'activity'

 AND a.activityType = 'Appointment'

 AND a.startDate BETWEEN '2018-10' AND '2018-12'

GROUP BY c.name,

 a.title,

 a.startDate,

 a.actduration,

 a.contacts,

 c.contacts

ORDER BY c.name,

 a.startDate

The query described in Listing 3.7.2 is an implementation of the current scenario for a MongoDB
query.

Listing 3.7.2 A MongoDB query implementation for the Search contacts scenario

var accountContacts = db.activity.aggregate([

 { $match: { type: "activity" } },

 { $match: { activityType: "Appointment" } },

 { $match: { startDate: { $gt: '2018-10-01', $lt: '2018-12-31' } } },

 {

 $lookup:

 {

 from: "account",

 localField: "accid",

 foreignField: "id",

 as: "account_docs"

 }

 },

 { $match: { "account_docs": { $ne: [] } } },

 { $unwind: "$account_docs" },

 {

 $group: {

 "_id": { name: "$account_docs.name" },

 activity_contacts: { $addToSet: "$contacts" },

 account_contacts: { $addToSet: "$account_docs.contacts" },

 }

 },
 { $unwind: "$account_contacts" },

 {

 $project: {

 _id: 0,

 name: "$_id.name",

 sizeAccountContacts: { $size: "$account_contacts" }

 }

 }

]).map(function (total) {

 return total;

})

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance

37

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

var rank_temp = db.activity.aggregate([

 { $match: { type: "activity" } },

 { $match: { activityType: "Appointment" } },

 { $match: { startDate: { $gt: '2018-10-01', $lt: '2018-12-31' } } },

 {

 $lookup:

 {

 from: "account",

 localField: "accid",

 foreignField: "id",

 as: "account_docs"

 }

 },

 { $match: { "account_docs": { $ne: [] } } },

 { $unwind: "$account_docs" },

 {

 $group: {

 "_id": {

 name: "$account_docs.name",

 title: "$title",

 startDate: "$startDate",

 duration: "$actduration",

 activity_contacts: "$contacts"

 }

 }

 },

 { $addFields: { accountContacts: accountContacts } },

 {

 $project: {

 "_id": 0,

 name: "$_id.name",

 title: "$_id.title",

 startDate: "$_id.startDate",

 duration: "$_id.duration",

 accountName: "$_id.name",

 sizeCurrentActivityContacts: { $size: "$_id.activity_contacts" },

 sizeAccountContacts: {

 $filter: {

 input: "$accountContacts",

 as: "element",

 cond: { $eq: ["$$element.name", "$_id.name"] }

 }

 }

 }

 },

 {

 $unwind: "$sizeAccountContacts"

 },

 { $addFields:{ sizeAccountContacts:

"$sizeAccountContacts.sizeAccountContacts" } },

 { $addFields: {

 hightouch_rank: {

 '$divide': ["$sizeCurrentActivityContacts", "$sizeAccountContacts"]

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance

38

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

 }

 }

 },

 { $addFields: { hightouch_rank: { '$multiply': ["$hightouch_rank", 10]

} } },

 { $addFields: { hightouch_rank: { $trunc: "$hightouch_rank" } } },

]).map(function (total) {

 return total;

})

var total_time = db.activity.aggregate([

 { $match: { type: "activity" } },

 { $match: { activityType: "Appointment" } },

 { $match: { startDate: { $gt: '2018-10-01', $lt: '2018-12-31' } } },

 {

 $lookup:

 {

 from: "account",

 localField: "accid",

 foreignField: "id",

 as: "account_docs"

 }

 },

 { $match: { "account_docs": { $ne: [] } } },

 { $match: { "account_docs.type": "account" } },

 { $unwind: "$account_docs" },

 {

 $group: {

 _id: { name: "$account_docs.name" },

 total_time: { $sum: "$actduration" }

 }

 },

 {

 $project: {

 "_id": 0,

 name: "$_id.name",

 total_time: "$total_time"

 }

 }

]).map(function (total) {

 return total;

})

var times = db.activity.aggregate([

 { $match: { type: "activity" } },

 { $match: { activityType: "Appointment" } },

 { $match: { startDate: { $gt: '2018-10-01', $lt: '2018-12-31' } } },

 {

 $lookup:

 {

 from: "account",

 localField: "accid",

 oreignField: "id",

 as: "account_docs"

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance

39

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

 }

 },

 { $match: { "account_docs": { $ne: [] } } },

 { $match: { "account_docs.type": "account" } },

 { $unwind: "$account_docs" },

 {

 $sort: { startDate: 1 }

 },

 {

 $group: {

 "_id": { name: "$account_docs.name" },

 time: { $push: "$actduration" }

 }

 },

 {

 $project: {

 "_id": 0,

 name: "$_id.name",

 time: "$time"

 }

 },

 {

 $sort: { name: 1 }

 }

]).map(function (total) {

 return total;

})

var running_total = db.activity.aggregate([

 { $match: { type: "activity" } },

 { $match: { activityType: "Appointment" } },

 { $match: { startDate: { $gt: '2018-10-01', $lt: '2018-12-31' } } },

 {

 $lookup:

 {

 from: "account",

 localField: "accid",

 foreignField: "id",

 as: "account_docs"

 }

 },

 { $match: { "account_docs": { $ne: [] } } },

 { $match: { "account_docs.type": "account" } },

 { $unwind: "$account_docs" },

 { $sort: { "name": 1, "startDate": 1 } },

 {

 $group: {

 "_id": { name: "$account_docs.name" },

 "items": { "$push": "$$ROOT" }

 }

 },

 { $unwind: { "path": "$items", "includeArrayIndex": "items.rank" } },

 { $replaceRoot: { "newRoot": "$items" } },

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance

40

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

 { $sort: { "name": 1, "startDate": 1 } },

 { $addFields: { times: times } },

 {

 $project: {

 name: "$account_docs.name",

 title: "$title",

 startDate: "$startDate",

 rank: "$rank",

 times: {

 $filter: {

 input: "$times",

 as: "element",

 cond: { $eq: ["$$element.name", "$account_docs.name"] }

 }

 }

 }

 },

 { $unwind: "$times" },

 {
 $addFields: {

 rank: {

 $sum: ["$rank", 1]

 }

 }

 },

 {

 $addFields: {

 times: {

 $slice: ["$times.time", "$rank"]

 }

 }

 },

 {

 $addFields: {

 times: {

 $reduce: {

 input: "$times",

 initialValue: 0,

 in: { $sum: ["$$value", "$$this"] }

 }

 }

 }

 },

 {

 $project: {

 _id: 0,

 name: "$name",

 title: "$title",

 startDate: "$startDate",

 times: "$times"

 }

 },

 { $sort: { "name": 1, "startDate": 1 } }

]).map(function (total) {

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance

41

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

 return total;

})

db.activity.aggregate([

 { $match: { type: "activity" } },

 { $match: { activityType: "Appointment" } },

 { $match: { startDate: { $gt: '2018-10-01', $lt: '2018-12-31' } } },

 {

 $lookup:

 {

 from: "account",

 localField: "accid",

 foreignField: "id",

 as: "account_docs"

 }

 },
 { $match: { "account_docs": { $ne: [] } } },

 { $unwind: "$account_docs" },

 {

 $group: {

 "_id": {

 name: "$account_docs.name",

 title: "$title",

 startDate: "$startDate",

 duration: "$actduration",

 activity_contacts: "$contacts",

 account_contacts: "$account_docs.contacts",

 }

 }

 },

 { $addFields: { total_time: total_time } },

 { $addFields: { hightouch_rank: rank_temp } },

 { $addFields: { running_total: running_total } },

 {

 $project: {

 "_id": 0,

 name: "$_id.name",

 title: "$_id.title",

 startDate: "$_id.startDate",

 duration: "$_id.duration",

 activity_contacts: "$_id.activity_contacts",

 account_contacts: "$_id.account_contacts",

 running_total: {

 $filter: {

 input: "$running_total",

 as: "element",

 cond: {

 $and: [

 { $eq: ["$$element.name", "$_id.name"] },

 { $eq: ["$$element.title", "$_id.title"] },

 { $eq: ["$$element.startDate",

"$_id.startDate"] }

]

 }

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance

42

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

 }

 },

 total_time: {

 $filter: {

 input: "$total_time",

 as: "element",

 cond: { $eq: ["$$element.name", "$_id.name"] }

 }

 },

 hightouch_rank: {

 $filter: {

 input: "$hightouch_rank",

 as: "element",

 cond: {

 $and: [

 { $eq: ["$$element.name", "$_id.name"] },

 { $eq: ["$$element.title", "$_id.title"] },

 { $eq: ["$$element.startDate",

"$_id.startDate"] }

]

 }

 }

 },

 sizeCurrentActivityContacts: { $size: "$_id.activity_contacts"

},

 }

 },

 { $unwind: "$total_time" },

 { $addFields: { pct_of_total_time: { '$divide': ["$duration",

"$total_time.total_time"] } } },

 { $addFields: { pct_of_total_time: { '$multiply':

["$pct_of_total_time", 100] } } },

 { $addFields: { pct_of_total_time: { $trunc: "$pct_of_total_time" } }

},

 { $unwind: "$hightouch_rank" },

 { $addFields: { hightouch_rank: "$hightouch_rank.hightouch_rank" } },

 {

 $project: {

 name: "$name",

 title: "$title",

 startDate: "$startDate",

 duration: "$duration",

 pct_of_total_time: "$pct_of_total_time",

 hightouch_rank: "$hightouch_rank",

 running_total: "$running_total.times"

 }

 },

 {

 $unwind: "$running_total"

 },

 { $sort: { name: 1, startDate: 1, hightouch_rank: -1 } }

])

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance

43

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

Summary

In this scenario, we need to use the data from two collections and make analytical calculations.

In N1QL, SUM is used alongside PARTITION to get the time spent on each meeting. For a MongoDB

query, the only way to archive this data is by creating a separate query.

With the TRUNC function of N1QL and other arithmetic operations, we can calculate the percentage of

time for each meeting against the total time spent talking to the customer. A MongoDB query supports

a similar method with the $trunc and $addFields functions.

To get the percentage of people who attended the meeting against all the customer’s contacts, N1QL

uses RANK over PARTITION. In case of MongoDB, it is needed to have additional queries.

This scenario shows the drawbacks of a MongoDB query in terms of working with analytics reports.
To get the necessary results, developers should use additional queries. This makes the query
complex and difficult to support. On the other hand, N1QL has a number of functions that help with
making such reports simple and more readable. It also takes less code and time to achieve the same
results.

MySQL cannot be compared in this scenario due to the lack of support for the array function.

Table 3.7.1 Metrics for the Search contacts scenario

Criteria MySQL (unsupported) N1QL MongoDB query

Simplicity - 8 1

Readability - 8 1

Expressiveness - 8 1

Flexibility - 8 3

Skills availability - 6 2

A number of code lines - 23 347

A number of client/server trips - 1 5

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance

44

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

3.8. Calling Google Natural Language API

In order to find a hotel based on the most positive reviews, you can read through all the reviews for all
the hotels or leverage Google Natural Language API to analyze the sentiment of the reviews. The
query should return top 10 hotel reviews based on the sentiment score.

Figure 3.8.1 demonstrates a JSON model for the current scenario.

Figure 3.8.1 A JSON model for the Calling Google Natural Language API scenario

The current scenario can be achieved with N1QL only.

The query described in Listing 3.8.1 is an implementation of the current scenario for N1QL.

Listing 3.8.1 An N1QL implementation for the Calling Google Natural Language API scenario

SELECT ginfo.name,

 ginfo.review,

 ginfo.sentscore.documentSentiment.magnitude,

 ginfo.sentscore.documentSentiment.score

FROM

 (

 SELECT h.name,

 r.content review,

 CURL("https://language.googleapis.com/v1/documents:analyzeSentiment?

 key=YOUR_API_KEY_HERE",

 { "request": "POST",

 "header" :"Content-Type: application/json",

 "data": mydata }

) sentscore

 FROM `travel-sample` h

 UNNEST h.reviews r

 LET mydata = '{ "encodingType": "UTF8", "document": { "type":

"PLAIN_TEXT",

 "content":"' || r.content || '"} }'

 WHERE h.city = 'Nice'

) ginfo

ORDER BY ginfo.sentscore.documentSentiment.score DESC

LIMIT 10

Summary

N1QL offers specific functionality, such as calling third-party services via the REST API from a query.
In our example, the query sends a request to Google Natural Language API for data analysis. Next,
N1QL uses the response from the request to create a general table, which increases the flexibility of
subsequent data processing. This functionality is appealing, because it removes the need to integrate
extra services for loading data from third-party systems.

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
https://language.googleapis.com/v1/documents:analyzeSentiment
http://www.altoros.com/research-papers

45

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

A MongoDB query and MySQL cannot implement this query, because they do not provide
functionality for calling the API natively. N1QL provides flexibility and simplicity of integration with
third-party systems, increasing our capability for analyzing data.

MySQL and a MongoDB query cannot be compared in this scenario, as they do not support the REST
API in the query.

Table 3.8.1 Metrics for the Calling Google Natural Language API scenario

Criteria MySQL (unsupported) N1QL MongoDB query (unsupported)

Simplicity - 9 -

Readability - 10 -

Expressiveness - 9 -

Flexibility - 9 -

Skills availability - 6 -

A number of code lines - 22 -

A number of client/server trips - 1 -

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance

46

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

3.9. Search criteria

Our goal is to identify the customer accounts and their related contacts where a particular topic has
been discussed. The search criteria may include the following information partially or in full: a meeting
title, a meeting date range, customer contact details, sales team member details (participants), and a
customer name.

Figure 3.9.1 demonstrates a relational model for the current scenario.

Figure 3.9.1 A relational model for the Search criteria scenario

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
http://www.altoros.com/research-papers

47

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

Figure 3.9.2 demonstrates a JSON model for the current scenario.

Figure 3.9.2 A JSON model for the Search criteria scenario

The current scenario can be achieved with all the three languages.

The query described in Listing 3.9.1 is an implementation of the current scenario for MySQL.

Listing 3.9.1 An SQL implementation for the Search criteria scenario

SELECT a.id,

 a.title,

 c.name customer,

 a.startDate,

 cn.name, cn.email

FROM activity a

 INNER JOIN account c ON a.accid = c.id

 INNER JOIN contact_activity cn ON c.id = cn.accid

WHERE a.activityType='Appointment'

 AND a.startDate BETWEEN '2016-08-29' AND '2016-08-30'

 AND UPPER(a.title) LIKE '%ARTIFICIAL INTELLIGENCE%'

 AND EXISTS (

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
http://www.altoros.com/research-papers

48

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

 SELECT 1

 FROM contact_activity ca

 WHERE ca.accid = c.id

 AND (LOWER(ca.name) LIKE '%rogers%')

 OR LOWER(ca.email) = 'eliottpamela@gmail.com')

 AND EXISTS (

 SELECT 1

 FROM participants p

 INNER JOIN `user` u ON p.userid = u.id

 WHERE p.actid = a.id

 AND LOWER(u.name) LIKE '%james%')

 AND LOWER(c.name) LIKE '%collins%'

The query described in Listing 3.9.2 is an implementation of the current scenario for N1QL.

Listing 3.9.2 An N1QL implementation for the Search criteria scenario

SELECT meta(a).id,

 a.title,

 a.startDate,

 a.account.name,

 a.contacts,

 a.participants

FROM crm a

WHERE a.type='activity'

 AND a.activityType='Appointment'

 AND SEARCH(a,

 {"conjuncts": [

 {"field":"title", "match": "artificial intelligence"},

 {"field":"contacts.name", "match":"rogers"},

 {"field":"contacts.email", "match":"eliottpamela@gmail.com"},

 {"field":"contacts.phone", "wildcard":"*6816*"},

 {"field":"participants.name", "match":"james"},

 {"field":"account.name", "match":"collins"},

 {"field":"startDate","start": "2016-08-29",

 "end":"2016-08-30", "inclusive_start": true, "inclusive_end": true}

]

 }, {"index":"all_acts"})

The query described in Listing 3.9.3 is an implementation of the current scenario for a MongoDB
query.

Listing 3.9.3 A MongoDB query implementation for the Search criteria scenario

db.activity.aggregate([

 { $match: {

 $text: {

 $search: "activity Appointment \"artificial intelligence\" 6816

rogers eliottpamela@gmail.com james collins" },

 "type": "activity",

 "activityType": "Appointment",
 "title": { $regex: /artificial intelligence/ },

 "contacts.name": { $regex: /rogers/ },

 "contacts.email": { $regex: /eliottpamela@gmail.com/ },

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:eliottpamela@gmail.com

49

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

 "contacts.phone": { $regex: /6816/ },

 "participants.name": { $regex: /james/ },

 "account.name": { $regex: /collins/ },

 "startDate": { $gte : '2016-08-29', $lte : '2016-08-30' }

 }},

 { $unwind: "$contacts" },

 { $project: {

 _id: 0,

 title: 1,

 startDate: 1,

 accountname: "$account.name",

 contactname: "$contacts.name",

 contacttitle: "$contacts.title",

 contactemail: "$contacts.email",

 participants: 1

 }}

])

Summary

The main point in this query is the search criteria. All queries languages offer the necessary

functionality for implementing this query. The MySQL implementation is based on LIKE. N1QL has

the Search Service which supports such a query. A MongoDB query uses $search and $regex for

implementing this query.

In MySQL, the LIKE operator is used in a WHERE clause to search for a specified pattern in a column.

This query uses LIKE each time it tries to search any values in any position. In MySQL, each criterion

should be specified after the AND operator.

In spite of N1QL being an SQL-like language, it offers a solution other than LIKE, which is

SEARCH(). This method has conjuncts if several criteria in search already exist. This means criteria

can be just separated by commas.

A MongoDB query also has the $search function, where values have to be specified. However, a

MongoDB query searches these values in each field. After a MongoDB query has collected the results

from the search, the $regex function should be used to define a search pattern.

All the databases can get the desired result as each database offers different functionality for

implementing the search request. MySQL uses LIKE, N1QL uses search with conjuncts, and a

MongoDB query uses $search with $regex. The query on each of the languages is not complex.

With N1QL, the query is more expressive compared to MySQL and a MongoDB query.

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance

50

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

Table 3.9.1 Metrics for the Search criteria scenario

Criteria MySQL N1QL MongoDB query

Simplicity 7 7 7

Readability 8 9 8

Expressiveness 9 9 8

Flexibility 8 10 9

Skills availability 4 6 5

A number of code lines 24 21 26

A number of client/server trips 1 1 1

4. Conclusion

Not all the three query languages can meet all the requirements of any given scenario. Only N1QL
was able to accomplish all the scenarios. A MongoDB query and SQL can achieve eight out of nine
scenarios and six out of nine scenarios, respectively. Each solution has its advantages and
disadvantages that become more or less apparent depending on a specific criterion to meet.

N1QL demonstrates good results across all the evaluated scenarios and appears to be a good
choice. Despite the nature of Couchbase Server, N1QL is quite similar to SQL. Furthermore, N1QL
offers a number of extra features useful in implementing unconventional and complex scenarios.
Though, N1QL provides a broad set of features, but it still requires extensive skills for handling this
functionality.

SQL demonstrates rather good results across all the scenarios. SQL is quite simple from the
developer’s perspective, so its implementation across all the scenarios does not involve much
complexity and has a good expressiveness. It should be noted that in some scenarios SQL lacks
flexibility due to the nature of database.

A MongoDB query produced comparatively low results. The reason of such performance is the
limitation of a MongoDB query. In most scenarios, a query implementation consists of several
subqueries. This way of implementation leads to a big number of client/server trips and code lines,
which has an impact across all the criteria. Despite limitations, a MongoDB query offers build
hierarchy on the fly. This allows for simplifying a JSON model.

5. About the authors

Artsiom Yudovin is a Data Engineer at Altoros with a solid software development

background. He is focused on maintaining, designing, customizing, upgrading, and
implementing complex software architectures, including data-intensive and distributed
systems. Artsiom dedicates much of his spare time to these activities and now he is
one of the contributors to well-known open-source projects.

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
http://www.altoros.com/research-papers

51

 engineering@altoros.com

www.altoros.com | twitter.com/altoros

+1 (650) 265-2266 Request a demo or

schedule a PoC

Uladzislau Kaminski is a Senior Software Engineer and Cloud-Native Development

Consultant at Altoros. His primary skills are software architecture and system design.
He took part in a numerous of projects connected with processing and distributing
huge amounts of data arrays. Uladzislau has a durable background in building
systems from scratch and adapting existing solutions, as well as designing, analyzing,
and testing them.

Altoros is a 300+ people strong consultancy that helps Global 2000 organizations with a
methodology, training, technology building blocks, and end-to-end solution development. The
company turns cloud-native app development, customer analytics, blockchain, and AI into products
with a sustainable competitive advantage. Assisting enterprises on their way to digital transformation,
Altoros stands behind some of the world's largest Cloud Foundry and NoSQL deployments. For
more, please visit www.altoros.com.

To download more research papers and articles:

 check out our resources page

 subscribe to the blog

 or follow @altoros for daily updates

http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com
http://www.altoros.com/
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
mailto:engineering@altoros.com?subject=Request%20a%20demo%20or%20schedule%20a%20PoC&body=Please%20contact%20me%20regarding%20a%20blockhain%20solution%20for%20insurance
https://www.altoros.com/
https://www.altoros.com/research-papers
https://altoros.com/blog
http://twitter.com/altoros
http://twitter.com/altoros
http://www.altoros.com/research-papers
http://www.altoros.com/research-papers

	1. Introduction
	2. Key findings
	3. Scenarios
	3.1. Meeting customers
	Figure 3.1.2 demonstrates a JSON model for the current scenario.
	Summary

	3.2. Regional sales management
	Summary

	3.3. Sales activities
	Summary

	3.4. Sales organizations
	Summary

	3.5. A sales task report
	Summary

	3.6. A skill set report
	Summary

	3.7. Search contacts
	Summary

	3.8. Calling Google Natural Language API
	Summary

	3.9. Search criteria
	Summary

	4. Conclusion
	5. About the authors

