
Why NoSQL
Databases?

A Developer’s Guide
Why successful projects rely on

NoSQL database applications

WHITEPAPER

WHITEPAPER 2

Contents
WHAT IS NOSQL? 	 3

What is a modern multi-model NoSQL database?	 3

Customer experience drives enterprises to NoSQL solutions	 3

Relational vs. NoSQL: What’s the difference?	 4

Supporting SQL and NoSQL developers	 4

Beyond relational database management systems (RDBMS)	 4

FIVE ADVANTAGES OF NOSQL DATABASES	 5

DEVELOP WITH AGILITY	 6

Adaptable NoSQL schema requirements	 6

Flexibility for faster development	 6

Simplicity for easier development	 7

Grouping documents to ease access	 9

Querying using SQL	 9

What about ACID transactions in NoSQL?	 10

One data source—multiple access methods	 11

OPERATE AT ANY SCALE	 11

DATABASE-AS-A-SERVICE	 12

BENEFITS OF DBAAS	 13

NOSQL IS A BETTER FIT FOR LARGE-SCALE REQUIREMENTS	 13

WHITEPAPER 3

WHAT IS NOSQL?

NoSQL is an umbrella term for database management systems that store
information in a variety of formats and structures that cater to specific data access
and processing requirements that traditional relational databases have trouble
addressing. Relational structures were necessary to minimize duplication during
an era when storage solutions were expensive. And for decades, database and
application functionality flourished until application functionality and large-scale
data volumes demanded alternative methods of data access. Google-style search,
for example, requires special indexing and scanning capabilities that relational
databases had trouble supporting.

Requirements like this are what spawned the creation of NoSQL databases. NoSQL
has also been called “Not only SQL,” and encompasses a variety of models including
key/value, document, column, time series, and graph. As NoSQL capabilities evolved,
they began to not only incorporate traditional relational database capabilities, they
have also begun to converge their data access models, creating today’s modern,
multi-model NoSQL databases.

What is a modern multi-model NoSQL database?
Modern NoSQL databases incorporate multiple data access methods, making them
useful across a wide variety of use cases. As they have evolved, JSON (JavaScript
Object Notation) has become a common data format from which these databases
are designed. Today’s NoSQL databases can deliver data for applications in ways that
make development easier and more robust.

NoSQL databases are built from the ground up to be fast, flexible, and support
modern cloud computing, distribution, and data management needs for modern
applications.

This paper introduces the modern challenges that NoSQL databases address and
shows when to choose NoSQL over relational and why.

Customer experience drives enterprises
to NoSQL solutions
Customer experience is the most important competitive differentiator and
businesses are working to meet these new expectations with services that are on
demand, real time, and responsive. Customer experiences are dynamic, operating
across multiple devices and interfaces, changing and evolving constantly. Keeping up
with this pace of change is the current challenge for all databases, including NoSQL.

Meeting the demands of these new systems requires flexibility, performance, and
scalability, and benefits from the ability to consolidate multiple types of systems to
reduce database sprawl.

RELATIONAL VS. NOSQL:
WHAT’S THE DIFFERENCE?

Relational databases were
born in the era of mainframes
and back-office business
applications—long before the
internet, the cloud, big data,
mobile, etc.

WHITEPAPER 4

Relational vs. NoSQL: What’s the difference?
Relational databases were born in the era of mainframes and back-office business
applications—long before the internet, the cloud, big data, mobile, etc. In fact, the
first commercial implementation was released by Oracle in 1979. These databases
were engineered to run on a single server—the bigger, the better. The only way to
increase the capacity of these databases was to upgrade the server—processors,
memory, and storage—to scale up as Moore’s Law allowed (also known as “vertical”
scaling).

NoSQL databases emerged as a result of the exponential growth of the internet and
the rise of web applications. Google Bigtable research was released in 2006, as well
as an Amazon Dynamo research paper in 2007. Efficient, distributed, highly scalable
key-value (KV) engines were essential to this evolutionary step and have propelled
the technology much further.

New databases were engineered to meet the next generation of enterprise
requirements, which companies like Couchbase have taken even further to meet
needs going into the future—the need to develop with agility.

Agility means providing flexible schemas, APIs, robust SQL-based querying, text
search, analytics, and more.

Supporting SQL and NoSQL developers
Traditional relational systems manage tabular data and return it as rows and
columns. NoSQL databases can do this without forcing application developers into
using a static schema that has to be altered every time there is a change. Instead,
NoSQL databases give developers the flexibility they need to help them excel at their
work.

NoSQL systems hold hierarchical JSON data, but return it to the application as full or
partial JSON data structures, full-text search matches, SQL query results, key-based
values, or even big data analytics systems.

This convergence of the best of relational and the best of modern NoSQL simplifies
the information architecture of enterprises and helps developers deliver applications
more efficiently with familiar concepts and tooling, without needing to learn a dozen
different platforms.

Beyond relational database management systems
(RDBMS)
To meet modern development styles, NoSQL databases provide the option to
store data in flexible formats while also delivering high speeds and keeping data
synchronized as systems scale.

WHITEPAPER 5

For example, teams are now expected to build data management layers that include
the following characteristics:

•	 Deliver highly responsive experiences, through the web and mobile

•	 Handle semi- and unstructured data

•	 Adapt rapidly to changing user requirements with frequent updates

•	 Deliver new features with shorter times to market

•	 Support multiple data type and data access methods

•	 Be always available—no downtime

It’s very difficult for SQL-based relational databases to meet these requirements
efficiently and cost-effectively, especially when it comes to uptime, scalability, and
responsiveness.

FIVE ADVANTAGES OF NOSQL DATABASES

Here are five areas that demonstrate the advantages of NoSQL databases.

Advantage Details

Structure data
to match the
application

•	 JSON documents align more to the way applications are structured
and can be serialized/deserialized directly from objects and
structures in code

•	 Logically design, organize, and reorganize JSON documents in
scopes/collections per requirements

Less rules,
faster data

•	 �JSON documents don’t need to denormalize all data like in
traditional RDBMS

•	 When denormalization is allowed, faster access to related
information stored in a single document is enabled

Supports ACID
in a smart way

•	 Data integrity can still be built in if desired or needed for part
of an application or microservice

•	 NoSQL doesn’t mean ACID transactions can’t be supported
(anymore)

More freedom
to evolve faster

•	 �Structures can change, reducing the burden on DBAs

•	 Agile development can move and evolve quicker

Supports mobile

•	 Create “offline-first” apps that work even when the network is down

•	 Automatically sync mobile/edge data with remote databases in the
cloud

•	 Support multiple mobile platforms with a single backend

NOSQL ALLOWS YOU TO
DEVELOP WITH AGILITY

•	 Adaptable NoSQL
schema requirements

•	 Flexibility for faster
development

•	 Simplicity for easier
development

WHITEPAPER 6

DEVELOP WITH AGILITY

To remain competitive, enterprises must innovate. Changing requirements can put
developers under pressure. Speed is critical, but so is agility, since these applications
can evolve far more rapidly than legacy applications. Relational databases have a
restricted, flat data structure and don’t respond well to frequent changes in the data
model.

Adaptable NoSQL schema requirements
A core principle of agile development is responding to change. When the
requirements change, the data model also changes. This is a problem for
relational databases because the data model can be cumbersome to change.
In order to change the data model, developers have to modify the schema, or
in some organizations, formally request a “schema change” from the database
administrators. This slows down or stops development, not only because it is a
manual, time consuming process, but because it also impacts other applications and
services.

Iteration 1– First, Last Iteration 2– First, Last, Twitter

Schema Utilized

USERS

ID First Last

Schema Utilized

USERS

ID First Last

USERS

0

Brendan Bond Shane Johnson @shane_dev

Brendan Bond

USERS

0 Brendan Bond
1 Shane Johnson

FIGURE 1

RDBMS – An explicit
schema prevents
the addition of new
attributes on demand

Flexibility for faster development
By comparison, a NoSQL document database fully supports agile development,
because it is schema-less and does not statically define how the data must be
modeled. Instead, it defers to the applications and services, and thus to the
developers as to how data should be modeled. With NoSQL, the data model is
defined by the application model. Applications and services model data as objects.

WHITEPAPER 7

Iteration 1– First, Last Iteration 2– First, Last, Twitter

USERS

Brendan Bond Shane
@shane_dev

Johnson

�
�����������������������
�������������������

�
���������������������
��������������
��������
���	��������������������

{...}{...}

FIGURE 2

JSON – The data
model evolves as new
attributes are added
on demand

Simplicity for easier development
Applications and services model data as objects (e.g., employee profile), multi-
valued data as arrays (e.g., roles), and related data as nested objects or arrays (e.g.,
manager relation). However, relational databases model data as tables of rows and
columns—related data as rows within different tables, multi-valued data as rows
within the same table.

One problem with relational data modeling is that data is read and written by
disassembling, or “shredding,” (like a paper shredder turns a single document
into multiple smaller strips) and reassembling objects. This is the object-relational
“impedance mismatch.” The workaround is object-relational mapping (ORM)
frameworks, which can be effective in simple scenarios, but can become problematic
in more complex situations.

Consider an application for managing resumes. It interacts with resumes as an object
of user objects. It contains an array for skills and a collection for positions. However,
writing a resume to a relational database requires the application to “shred” the user
object.

Storing this resume would require the application to insert six rows into three tables,
as illustrated in Figure 3.

However, reading this profile would require the application to read six rows from
three tables, as illustrated in Figure 4.

WHITEPAPER 8

Shane

Big Data Java NoSQL

ID First Last

1 Shane Johnson

Johnson

USERS

USERS

Role Company

1 Tech Mktg Red Hat

1 Prod Mktg Couchbase

USER EXPERIENCE

User ID

User ID

Skill Name

1 Big Data

1 Java

1 NoSQL

USER SKILLS

Skills:

Experience:

Product Marketing Couchbase

Technical Marketing Red Hat

FIGURE 3

RDBMS – Applications
“shred” objects into
rows of data stored in
multiple tables

Shane Johnson Big Data Product Mktg

Technical Mktg

Product Mktg

Technical Mktg

Product Mktg

Technical Mktg

Big Data

Couchbase

Red Hat

Couchbase

Red Hat

Couchbase

Red Hat

Java

Java

NoSQL

NoSQL

Johnson

Johnson

Johnson

Johnson

Johnson

Shane

Shane

Shane

Shane

Shane

FIGURE 4

RDBMS – Queries
return duplicate data,
applications have to
filter it out

In contrast, a document-oriented NoSQL database reads and writes data formatted
in JSON—which is the de facto standard for consuming and producing data for
web, mobile, and IoT applications. It not only can eliminate the object-relational
impedance mismatch, it can eliminate the overhead of ORM frameworks and
simplifies application development because objects are read and written without
“shredding” them—i.e., a single object can be read or written as a single document,
as illustrated in Figure 5.

WHITEPAPER 9

Shane

Big Data Java NoSQL

Johnson

USERS

Skills:

Experience:

Product Marketing Couchbase

Technical Marketing Red Hat

USERS

{...}

�
�����������������������
���������������
��������
������������
�	�����������
���������������
���������������

�����
��������������������������������������
������������������������ ���
�����­�
������
�����������������������������������
������������������������������
������­
����
­

FIGURE 5

JSON – Applications
can store objects with
nested data as single
documents

Grouping documents to ease access
Unlike using predefined sets of schemas to differentiate tables from one another,
NoSQL databases have a concept, such as buckets, that serve as a general holding
area for all documents. A database can have many logical, named buckets for various
purposes. The name is provided while connecting or requesting data and allows
applications to have their own area in the system.

Within those buckets are additional hierarchical logical groupings that can be
restricted to particular users or roles. These are called collections and/or scopes,
allowing subsets of documents in a bucket to be named. Because this flexibility helps
segregate data of one user or application from another, the developer does not have
to build their own security and reliability code, but can instead let the underlying
database do it.

Querying using SQL
Application developers that are used to querying with SQL can continue to use
the same language in NoSQL platforms but operate against the JSON data that is
stored. For example, Couchbase provides a SQL-based query standard known as
SQL++ (previously known as N1QL) that returns results in JSON with sets of rows
and subdocument components where appropriate. This is in contrast to the vast
majority of other NoSQL databases (like MongoDB™) that don’t use SQL and require
developers to climb a new language learning curve.

Standard statements are supported including SELECT … FROM … WHERE syntax.
SQL++ also supports aggregation, sorting, and joins (GROUP BY … SORT BY …
LEFT OUTER/INNER JOIN). Querying collections, scopes, and even nested arrays is
supported. Query performance can be improved with composite, partial, covering
indexes, and more.

There are minimal changes for SQL experts to move to SQL++ where desired, with
many basic queries working out of the box.

“We wanted a solution

that seamlessly works

across server and mobile,

and that the developers

could use without lots of

retraining. None of the other

solutions came even close to

Couchbase’s broad enterprise

capabilities.”

—AVIRAM AGMON, CTO,
 MACCABI HEALTH CARE

Case study:
https://www.couchbase.
com/customers/maccabi

https://www.couchbase.com/customers/maccabi
https://www.couchbase.com/customers/maccabi

WHITEPAPER 10

SQL SQL++

SELECT p.FirstName + ' ' + p.LastName AS
Name, d.City

FROM AdventureWorks2016.Person.Person AS p

INNER JOIN AdventureWorks2016.
HumanResources.Employee e

ON p.BusinessEntityID = e.BusinessEntityID

INNER JOIN

 (SELECT bea.BusinessEntityID, a.City

 FROM AdventureWorks2016.Person.Address
AS a

 INNER JOIN AdventureWorks2016.Person.
BusinessEntityAddress AS bea

 ON a.AddressID = bea.AddressID) AS d

ON p.BusinessEntityID = d.BusinessEntityID

ORDER BY p.LastName, p.FirstName;

SELECT p.FirstName || ' ' || p.LastName AS
Name, d.City

FROM AdventureWorks2016.Person.Person AS p

INNER JOIN AdventureWorks2016.
HumanResources.Employee e

ON p.BusinessEntityID = e.BusinessEntityID

INNER JOIN

 (SELECT bea.BusinessEntityID, a.City

 FROM AdventureWorks2016.Person.Address
AS a

 INNER JOIN AdventureWorks2016.Person.
BusinessEntityAddress AS bea

 ON a.AddressID = bea.AddressID) AS d

ON p.BusinessEntityID = d.BusinessEntityID

ORDER BY p.LastName, p.FirstName;

What about ACID transactions in NoSQL?
NoSQL databases also operate as operational systems with large numbers of
transactions. When you flatten out a business entity into multiple separate tables,
you require a transaction for almost every update. With NoSQL databases, you
don’t need to flatten out the entity, but can usually contain it in a single document.
Updates to a single document are atomic and don’t require a transaction.

However, there may be updates that span multiple documents and require a check
to ensure “all or nothing” of the transaction occurs. For instance, a transfer of credits
from one user’s account to another.

This is why NoSQL databases like Couchbase support transactions.

START TRANSACTION;
UPDATE customer SET balance = balance + 100 WHERE cid = 4872;
SELECT cid, name, balance from customer;
SAVEPOINT s1;
UPDATE customer SET balance = balance – 100 WHERE cid = 1924;
SELECT cid, name, balance from customer;
ROLLBACK WORK TO SAVEPOINT s1;
SELECT cid, name, balance from customer;
COMMIT ;

WHITEPAPER 11

The combination of transactions and SQL greatly expand the number of use cases
where a NoSQL database can be considered. In the past, the inability to join or
handle transactional operations meant that NoSQL databases were only chosen for
the highest volume and scale use cases. But the option of using SQL and transactions
means that NoSQL databases can also be chosen for traditional RDBMS cases that
need more flexibility and power.

Additionally, by selecting a transactional NoSQL database, many traditionally
complex applications can be simplified because there is no need for an ORM tool.

One data source—multiple access methods
NoSQL databases operate as a primary content store, meaning you enter the data
in one application but can access it multiple ways depending on the use case. For
example, developers can use direct API calls to access a specific document using a
key or through a SQL query that returns multiple rows of data in a JSON response.
This is known as “multi-model.”

Other access methods are available depending on the database, including full-text
search systems that allow natural language search requests. Requests can be made
for full or partial “fuzzy” matches, geographic ranges, or wildcard searches. The
response includes a JSON document with lists of matching document IDs, contextual
information, and a relevancy score.

Full-text search systems are often separate from a database but NoSQL databases
like Couchbase include them as part of the underlying system, resulting in a simpler
overall architecture.

Big data analytics are possible as well, using complementary subsystems that
process larger volumes of historical data. Using advanced indexing and query
capabilities, also based on SQL++, more advanced analytics can be done in the same
database without needing a separate, external OLAP system.

Because the data is stored and indexed all within the one database product, it allows
developers to connect to one system and pass through the relevant requests.

OPERATE AT ANY SCALE

Databases that support web, mobile, and IoT applications must be able to operate
at any scale. While it is possible to scale a relational database like Oracle (using, for
example, Oracle RAC), doing so is typically complex, expensive, and not fully reliable.
NoSQL distributed databases—designed with a scale-out architecture and no single
point of failure—provides compelling operational advantages.

“For many, many years, we

said, ‘Wouldn’t it be nice to

have a data store where

we could go from the

Java object right into the

database and back without

a big translation and lots of

overhead?’ Well, this is it.”

—THOMAS VIDNOVIC,
 SOLUTIONS ARCHITECT,
 MARRIOTT INTERNATIONAL

Case study:
https://www.couchbase.
com/customers/marriott

https://www.couchbase.com/customers/marriott/
https://www.couchbase.com/customers/marriott/

WHITEPAPER 12

A distributed NoSQL database runs on commodity hardware to scale out—i.e.,
add more resources simply by adding more servers to a cluster (sometimes known
as “horizontal scaling”). The ability to scale out enables enterprises to scale more
efficiently by (a) deploying no more hardware than is required to meet the current
load; (b) applying less expensive hardware and/or cloud infrastructure; and (c)
scaling on demand and without downtime.

Availability is also important. These mission-critical applications have to be available
24 hours a day, 7 days a week—no exceptions. Delivering 24x7 availability is a
challenge for relational databases that are deployed to a single physical server or
that rely on clustering with shared storage. If the single server or shared storage fails,
the database becomes unavailable, applications stop, and customers get frustrated.

Being available in constrained environments means being fast. NoSQL databases
sometimes need an additional in-memory layer to provide sub-millisecond response
time. Some (like Couchbase) natively integrate an in-memory layer, making it easier
to operate at no additional cost.

A distributed NoSQL database includes built-in replication between data centers—
no separate software is required. In addition, some (like Couchbase) include
bidirectional replication enabling full active-active deployments to multiple data
centers. This enables the database to be deployed in multiple countries or regions
while providing local data access to local applications and their users.

DATABASE-AS-A-SERVICE

Many organizations are looking to reduce their operational efforts and costs
of running software and hardware, and databases are no exception. Typically
a Database-as-a-Service, or DBaaS, streamlines and improves operations and
reduces the amount of work that teams have to do, for example: IaaS setup
and configuration, database provisioning, database provisioning, operations
management, scaling automation, monitoring, and security.

Operational management reduces many of the tasks of maintaining a database
environment, allowing companies to focus more time and effort on core business
activities. These operational processes can include ongoing configuration, patching,
upgrades, backup and recovery activities, and overall system monitoring.

BENEFITS OF DBAAS

•	 Rapid setup

•	 Easily scale or evolve
configurations

•	 High service levels

•	 Security automation

WHITEPAPER 13

BENEFITS OF DBAAS

DBaaS offerings limit the work of often overstretched IT teams, providing
convenience and opportunities to focus on more high-value projects. New databases
can often be spun up in minutes instead of a traditional multi-week provisioning
process.

From both a financial and operations perspective, companies see benefits like:

•	 Rapid setup – DBaaS capabilities allow users to provision new database instances
when needed in a self-service, highly automated fashion. Developers can more
quickly test out new projects to drive company innovation.

•	 Easily scale or evolve configurations – As the needs of users and applications
change, modify the configuration of clusters to match those needs. The database
makes it easy to match regional needs and keep up with regulatory changes.

•	 High service levels – Most DBaaS systems provide at least a 99% uptime SLA, and
often much higher. Replication and redundancy architecture improve quality even
further as deployments go global.

•	 Security automation – Advanced DBaaS systems build in multiple levels of
security and encryption to protect data at rest, in transit, and throughout the data’s
lifecycle.

NOSQL IS A BETTER FIT FOR LARGE-SCALE REQUIREMENTS

Tens of thousands of organizations have adopted NoSQL. For many, the use of
NoSQL started with a proof of concept, or a single use case, then expanded to more
critical applications. Today, the Couchbase NoSQL database is used in thousands of
use cases and workloads.

With NoSQL, enterprises are better able to both develop with agility and operate
at any scale—and deliver the performance and availability required to meet the
demands of businesses.

Modern customer experiences need a flexible database platform that can
power applications spanning from cloud to edge and everything in between.
Couchbase’s mission is to simplify how developers and architects develop,
deploy and consume modern applications wherever they are. We have
reimagined the database with our fast, flexible and affordable cloud database
platform Capella, allowing organizations to quickly build applications that
deliver premium experiences to their customers—all with best-in-class price
performance. More than 30% of the Fortune 100 trust Couchbase to power
their modern applications.

For more information, visit www.couchbase.com and follow us on Twitter.

© 2023 Couchbase. All rights reserved.

https://www.couchbase.com

	What is NoSQL?
	What is a modern multi-model NoSQL database?
	Customer experience drives enterprises to NoSQL solutions
	Relational vs. NoSQL: What’s the difference?
	Supporting SQL and NoSQL developers
	Beyond relational database management systems (RDBMS)

	Five advantages of NoSQL databases
	Develop with agility
	Adaptable NoSQL schema requirements
	Flexibility for faster development
	Simplicity for easier development
	Grouping documents to ease access
	Querying using SQL
	What about ACID transactions in NoSQL?
	One data source—multiple access methods

	Operate at any scale
	Database-as-a-Service
	Benefits of DBaaS
	NoSQL is a better fit for large-scale requirements

