
Why NoSQL
Databases

for Gaming?
Why successful projects rely on

NoSQL database applications

WHITEPAPER

Contents
PREFACE		 3

WHAT IS NOSQL? 	 4

Customer experience drives enterprise to NoSQL solutions	 4

Supporting SQL and NoSQL developers	 5

Scaling beyond SQL databases	 5

TODAY’S TRENDS—TOMORROW’S CHALLENGES	 6

Five advantages of NoSQL databases	 6

DEVELOP WITH AGILITY 	 8

Adaptable NoSQL schema requirements	 8

Flexibility for faster development	 8

Simplicity for easier development	 9

Grouping documents to ease access	 11

Querying using SQL	 11

What about ACID transactions in NoSQL?	 12

One data source—multiple access methods	 14

OPERATE AT ANY SCALE	 14

Elasticity for performance at scale	 15

Availability for always-on, global deployment	 16

NOSQL IS A BETTER FIT FOR LARGE-SCALE REQUIREMENTS	 18

WHITEPAPER 2

WHITEPAPER 3

PREFACE

Social gaming and online sports betting are competitive environments. Games
must be able to handle large volumes of unpredictable traffic while simultaneously
promising zero downtime. For these companies, user retention is no longer just
desirable, it’s critical. Gamers expect to play whenever they want for as long as they
want, and have a low tolerance for delays or lag. At the heart of any successful game
is a database that maintains 100% uptime, scales in real time to handle millions of
users or more, and provides users with a responsive and personalized experience
across all of their devices. This is why gaming and betting companies choose
Couchbase as they move away from monolithic solutions to microservice-based
architectures, focusing on building engaging, responsive, and scalable applications.

The most important aspect of any game is its player experience, and with rising
expectations and the need for instant gratification, guaranteeing consistent, low-
latency data access is critical. Gaming companies need a 360-degree view of their
customers to provide them with real-time, personalized data for achievements, stats,
and leaderboards. User profile data is stored to support multiple services and enable
users to play games across different platforms and devices.

Player experience begins with availability. With users worldwide, a game not only
has to be available 24x7, 365 days a year, but it also has to be available everywhere
—with no single point of failure. Nexon, a global leader in virtual world games
and massively multiplayer online role-playing games (MMORPG), uses Couchbase
Capella™ Database-as-a-Service (DBaaS) for greater developer agility. Capella’s
high availability and distributed memory-first architecture deliver a consistent
performance experience for players as game adoption grows.

Scalability is also a key consideration for gaming companies. In the present
environment, social games have the potential to go viral at any time. Meeting this
spike in demand can be overwhelming for relational databases. Couchbase supports
these ever-increasing workloads and scales easily without disruption. Jam City, a
leader in mobile entertainment, provides unique and deeply engaging games that
appeal to broad global audiences. Its wildly popular puzzle game Cookie Jam won
Facebook’s Game of the Year after scaling to meet the demand of 35 million users
globally in under 8 months. Jam City and Couchbase teamed up in preparation for
the huge spike in social and mobile hits once Cookie Jam had begun gaining traction,
successfully avoiding downtime with Couchbase performance at scale and flexibility
in rebalancing and failover through cross data center replication (XDCR).

Betfair, one of the world’s largest online sports betting providers, is another
customer experiencing improved performance, flexibility, and scalability of its NoSQL
deployments with Couchbase. Betfair uses numerous applications to serve over 4
million funded accounts across 140 countries. To eliminate unnecessary complexity,
the company moved many of their applications from Oracle to Couchbase. The
platform provided easy integration and the continuous delivery needed to process
over 30,000 bets per minute.

CUSTOMER SUCCESS STORIES

https://www.couchbase.com/customers/nexon
https://www.couchbase.com/customers/jam-city
https://www.couchbase.com/customers/betfair

WHITEPAPER 4

WHAT IS NOSQL?

NoSQL is a modern database management system that stores information in JSON
documents instead of the columns and rows used by relational databases. It can
deliver data for applications in ways that make development easier and more robust.

NoSQL databases are built from the ground up to be flexible, scalable, and capable
of rapidly responding to the data management demands of modern businesses.

This paper introduces the modern challenges that NoSQL databases address and
shows when to choose NoSQL over relational and why.

Customer experience drives enterprise
to NoSQL solutions
Customer experience is the most important competitive differentiator and
businesses are working to meet these new expectations with services that are on
demand, real time, resilient, and responsive.

Bringing together all of these new systems requires flexibility, performance, and
scalability and can consolidate multiple types of systems to reduce database sprawl.

replace with

replace with

2 vCPU
15Gib RAM
475mb

4 vCPU
30Gib RAM
950mb

8 vCPU
61Gib RAM
1900mb

Relational vs. NoSQL: What’s the difference?
Relational databases were born in the era of mainframes and back-office business
applications—long before the internet, the cloud, big data, mobile, etc. In fact, the
first commercial implementation was released by Oracle in 1979. These databases
were engineered to run on a single server—the bigger, the better. The only way to
increase the capacity of these databases was to upgrade the server—processors,
memory, and storage—to scale up as Moore’s Law allowed.

WHITEPAPER 5

NoSQL databases emerged as a result of the exponential growth of the internet and
the rise of web applications. Google Bigtable research was released in 2006, as well
as an Amazon Dynamo research paper in 2007. Efficient distributed key-value (KV)
engines were essential to this evolutionary step and have propelled the technology
much further.

New databases were engineered to meet the next generation of enterprise
requirements, which companies like Couchbase have taken even further to meet
needs going into the future—the need to develop with agility and to operate at
any scale.

Agility means providing flexible schemas, APIs, robust SQL-based querying, text
search, analytics, and more. Scalability allows data to grow without sacrificing
performance and stability.

Supporting SQL and NoSQL developers
Traditional relational systems manage tabular data and return it as rows and columns.
NoSQL databases can do this without forcing application developers into using a
static schema that has to be reworked every time there is a change. Instead, NoSQL
databases give developers the flexibility they need to help them excel at their work.

NoSQL systems hold hierarchical JSON data but return it to the application as full or
partial JSON data structures, full-text search matches, SQL query results, key-based
values, or even big data analytics systems.

This convergence of the best of relational and the best of modern NoSQL simplifies
the information architecture of enterprises and helps developers deliver applications
more efficiently with familiar concepts and tooling, without needing to learn a dozen
different platforms.

Scaling beyond SQL databases
To operate at scale, NoSQL systems approach cluster-based computing with efficient,
automatic cluster management to keep data synchronized and flowing at high speeds.

For example, teams are now expected to build enterprise data management
infrastructure that includes the following characteristics:

•	 Support large numbers of concurrent users (tens of thousands, perhaps millions)

•	 Deliver highly responsive experiences to a globally distributed base of users

•	 Be always available—no downtime

•	 Handle semi- and unstructured data

•	 Rapidly adapt to changing requirements with frequent updates and new features

SQL-based relational databases are unable to meet these requirements efficiently
and cost-effectively.

WHITEPAPER 6

Consider just a few examples of Global 2000 enterprises that are deploying NoSQL
for mission-critical applications that have been featured in recent news reports:

•	 Tesco, Europe’s No. 1 retailer deploys NoSQL for e-commerce, product catalog,
and other applications

•	 Ryanair, the world’s busiest airline uses NoSQL to power its mobile app serving
over 3 million users

•	 Marriott hosts 30 million documents, accessed at 4,000 transactions per second

•	 GE deploys NoSQL for its Predix platform to help manage the industrial internet

•	 Sky / Peacock deploys NoSQL to offer a seamless viewing experience during peak
watching times

TODAY’S TRENDS—TOMORROW’S CHALLENGES

Today’s customer experience goals depend on tightly aligned technical integration
more than ever before, but it must be able to handle trends going forward or risk
becoming outdated.

Some of the high-level technical goals include:

•	 Consolidated platforms that work together efficiently

•	 Simplified system architectures that are easy to manage

•	 Effective data “plumbing” for real-time web applications and low latency

•	 Act as a service layer that pushes data as close to the customer as possible

Five advantages of NoSQL databases
Ambitious customers with big ideas for how to use data have unleashed a new set of
technology requirements for CIOs and technical leaders.

Here are five trends that play into the advantages of NoSQL databases for
addressing the challenges of building software.

Trends Requirements

Customer shift
continues online

•	Scaling to support thousands or even millions of users

•	Meeting UX requirements with consistently high performance

•	Maintaining availability 24 hours a day, 7 days a week

The internet
is connecting
everything

•	�Supporting many different applications with different data structures

•	Ensuring software is “always on” with no excuse for downtime

•	�Supporting continuous streams of data from the real-time web

Big data is
getting bigger

•	Storing customer-generated semi-structured and unstructured data

•	�Storing different types of data from different sources in the same
infrastructure or even the same cluster

•	�Storing data generated by thousands or millions of customers and
IoT devices

Applications are
moving to the cloud

•	�Scaling on demand to support more customers, and store more data

•	�Operating fully managed applications on a global scale to support
customers worldwide

•	�Minimizing infrastructure and operating costs, achieving a faster time
to market

The world has
gone mobile

•	Creating “offline-first” apps – network connection not required

•	�Synchronizing mobile/edge data with remote databases in the cloud

•	Supporting multiple mobile platforms with a single backend

The above requirements are extensive and challenge even the best systems to do
even more with less. Today’s extreme requirements can be loosely grouped into two
categories that impact two different levels of end users:

•	 Providing agile platforms for application developers to excel

•	 Supporting scalable system architectures that outperform others

WHITEPAPER 7

WHITEPAPER 8

DEVELOP WITH AGILITY

To remain competitive, enterprises must innovate – and now they have to do it faster
than ever before. Developers are under extraordinary pressure. Speed is critical, but
so is agility, since these applications evolve far more rapidly than legacy applications.
Relational databases have a restricted, flat data structure and don’t respond well to
frequent changes in the data model. This often impedes the needs of modern, agile
projects, applications, and business requirements.

Adaptable NoSQL schema requirements
A core principle of agile development is responding to change. When the
requirements change, the data model also changes. This is a problem for relational
databases because the data model can be cumbersome to change. In order to change
the data model, developers have to modify the schema, or in some organizations,
formally request a “schema change” from the database administrators. This slows
down or stops development, not only because it is a manual, time-consuming
process, but because it also impacts other applications and services

Iteration 1– First, Last Iteration 2– First, Last, Twitter

Schema Utilized

USERS

ID First Last

Schema Utilized

USERS

ID First Last

USERS

0

Brendan Bond Shane Johnson @shane_dev

Brendan Bond

USERS

0 Brendan Bond
1 Shane Johnson

FIGURE 1

RDBMS – An explicit
schema prevents
the addition of new
attributes on demand

Flexibility for faster development
By comparison, a NoSQL document database fully supports agile development,
because it is schema-less and does not statically define how the data must be
modeled. Instead, it defers to the applications and services, and thus to the
developers as to how data should be modeled. With NoSQL, the data model is
defined by the application model. Applications and services model data as objects.

WHITEPAPER 9

Iteration 1– First, Last Iteration 2– First, Last, Twitter

USERS

Brendan Bond Brendan
@shane_dev

Bond

�
�����������������������
�������������������

�
���������������������
��������������
��������
���	��������������������

{...}{...}

FIGURE 2

JSON – The data
model evolves as new
attributes are added
on demand

Simplicity for easier development
Applications and services model data as objects (e.g., employee profile), multi-
valued data as arrays (e.g., roles), and related data as nested objects or arrays (e.g.,
manager relation). However, relational databases model data as tables of rows and
columns—related data as rows within different tables, multi-valued data as rows
within the same table. One problem with relational data modeling is that data is read
and written by disassembling, or “shredding,” (like a paper shredder turns a single
document into multiple smaller strips) and reassembling objects. This is the object-
relational “impedance mismatch.”

The workaround is object-relational mapping (ORM) frameworks, which can be
effective in simple scenarios, but can become problematic in more complex
situations.

Consider an application for managing resumes. It interacts with resumes as an object
of user objects. It contains an array for skills and a collection for positions. However,
writing a resume to a relational database requires the application to “shred” the user
object.

Storing this resume would require the application to insert six rows into three tables,
as illustrated in Figure 3.

However, reading this profile would require the application to read six rows from
three tables, as illustrated in Figure 4.

WHITEPAPER 10

Shane

Big Data Java NoSQL

ID First Last

1 Shane Johnson

Johnson

USERS

USERS

Role Company

1 Tech Mktg Red Hat

1 Prod Mktg Couchbase

USERS

User ID

User ID

Skill Name

1 Big Data

1 Java

1 NoSQL

USERS

Skills:

Experience:

Product Marketing Couchbase

Technical Marketing Red Hat

FIGURE 3

RDBMS – Applications
“shred” objects into
rows of data stored in
multiple tables

Shane Johnson Big Data Product Mktg

Technical Mktg

Product Mktg

Technical Mktg

Product Mktg

Technical Mktg

Big Data

Couchbase

Red Hat

Couchbase

Red Hat

Couchbase

Red Hat

Java

Java

NoSQL

NoSQL

Johnson

Johnson

Johnson

Johnson

Johnson

Shane

Shane

Shane

Shane

Shane

FIGURE 4

RDBMS – An explicit
schema prevents
the addition of new
attribues on demand

In contrast, a document-oriented NoSQL database reads and writes data formatted
in JSON—which is the de facto standard for consuming and producing data for
web, mobile, and IoT applications. It not only can eliminate the object-relational
impedance mismatch, it can eliminate the overhead of ORM frameworks and
simplifies application development because objects are read and written without
“shredding” them—i.e., a single object can be read or written as a single document,
as illustrated in Figure 5.

WHITEPAPER 11

Shane

Big Data Java NoSQL

Johnson

USERS

Skills:

Experience:

Product Marketing Couchbase

Technical Marketing Red Hat

USERS

{...}

�
�����������������������
���������������
��������
������������
�	�����������
���������������
���������������

�����
��������������������������������������
������������������������ ���
�����­�
������
�����������������������������������
������������������������������
������­
����
­

FIGURE 5

RDBMS – Applications
can store objects with
nested data as single
documents

Grouping documents to ease access
Unlike using predefined sets of schemas to differentiate tables from one another,
NoSQL databases have a concept, such as buckets, that serve as a general holding
area for all documents. A database can have many logical, named, buckets for
various purposes. The name is provided while connecting or requesting data and
allows applications to have their own area in the system.

Within those buckets are additional hierarchical logical groupings that can be
restricted to particular users or roles. These are called collections and/or scopes,
allowing subsets of documents in a bucket to be named. Because this flexibility helps
segregate data of one user or application from another, the developer does not have
to build their own security and reliability code, but can instead let the underlying
database do it.

Querying using SQL
Application developers that are used to querying with SQL can continue to use
the same language in NoSQL platforms but operate against the JSON data that is
stored. For example, Couchbase provides a SQL-based query standard known as
SQL++ (sometimes known as N1QL) that returns results in JSON with sets of rows
and subdocument components where appropriate. This is in contrast to the vast
majority of other NoSQL databases (like MongoDB™) that don’t use SQL and require
developers to climb a new language learning curve.

Standard statements are supported including SELECT … FROM … WHERE syntax.
SQL++ also supports aggregation, sorting, and joins (GROUP BY … SORT BY …
LEFT OUTER/INNER JOIN). Querying collections, scopes, and even nested arrays is
supported. Query performance can be improved with composite, partial, covering
indexes, and more.

There are minimal changes for SQL experts to move to SQL++ where desired, with
many basic queries working out of the box.

WHITEPAPER 12

SQL SQL++

SELECT p.FirstName + ' ' + p.LastName AS

 Name, d.City

FROM AdventureWorks2016.Person.Person AS p

INNER JOIN AdventureWorks2016.

 HumanResources.Employee e

ON p.BusinessEntityID = e.BusinessEntityID

INNER JOIN

 (SELECT bea.BusinessEntityID, a.City

 FROM AdventureWorks2016.Person.Address

 AS a

 INNER JOIN AdventureWorks2016.Person.

 BusinessEntityAddress AS bea

 ON a.AddressID = bea.AddressID) AS d

ON p.BusinessEntityID = d.BusinessEntityID

ORDER BY p.LastName, p.FirstName;

SELECT p.FirstName || ' ' || p.LastName AS

 Name, d.City

FROM AdventureWorks2016.Person.Person AS p

INNER JOIN AdventureWorks2016.

 HumanResources.Employee e

ON p.BusinessEntityID = e.BusinessEntityID

INNER JOIN

 (SELECT bea.BusinessEntityID, a.City

 FROM AdventureWorks2016.Person.Address

 AS a

 INNER JOIN AdventureWorks2016.Person.

 BusinessEntityAddress AS bea

 ON a.AddressID = bea.AddressID) AS d

ON p.BusinessEntityID = d.BusinessEntityID

ORDER BY p.LastName, p.FirstName;

What about ACID transactions in NoSQL?
NoSQL databases also operate as operational systems with large numbers of
transactions. When you flatten out a business entity into multiple separate tables,
you require a transaction for almost every update. With NoSQL databases, you
don’t need to flatten out the entity, but can usually contain it in a single document.
Updates to a single document are atomic and don’t require a transaction.

However, there may be updates that span multiple documents and require a check
to ensure “all or nothing” of the transaction occurs. For instance, a transfer of credits
from one user’s account to another.

This is why NoSQL databases like Couchbase support transactions.

WHITEPAPER 13

Java example:

Transactions transactions = Transactions.create(cluster,

	 TransactionConfigBuilder.create()

.durabilityLevel(TransactionDurabilityLevel.PERSIST_TO_MAJORITY)

	 	 	 .logOnFailure(true, Event.Severity.WARN)

		 .build());

TransactionResult result = transactions.run((ctx) -> {

	 // Inserting a doc:

	 ctx.insert(collection, "doc-a", JsonObject.create());

// Getting documents:

// Use ctx.getOptional if the document may or may not exist

Optional<TransactionGetResult> docOpt =

	 	 	 ctx.getOptional(collection, "doc-a");

	 // Use ctx.get if the document should exist, and the transaction

	 // will fail if it does not

	 TransactionGetResult docA = ctx.get(collection, "doc-a");

	 // Replacing a doc:

	 TransactionGetResult docB = ctx.get(collection, "doc-b");

	 JsonObject content = docB.contentAs(JsonObject.class);

	 content.put("transactions", "are awesome");

	 ctx.replace(docB, content);

	 // Removing a doc:

	 TransactionGetResult docC = ctx.get(collection, "doc-c");

	 ctx.remove(docC);

	 ctx.commit();

});

WHITEPAPER 14

The combination of transactions and SQL greatly expand the number of use cases
where a NoSQL database can be considered. In the past, the inability to join or
handle transactional operations meant that NoSQL databases were only chosen for
the highest volume and scale use cases. But the option of using SQL and transactions
means that NoSQL databases can also be chosen for traditional RDBMS cases that
need more flexibility and power.

Additionally, by selecting a transactional NoSQL database, many traditionally
complex applications can be simplified because there is no need for an ORM tool.

One data source—multiple access methods
NoSQL databases operate as a primary content store, meaning you enter the data
in one application but can access it multiple ways depending on the use case. For
example, developers can use direct API calls to access a specific document using a
key or through a SQL query that returns multiple rows of data in a JSON response.
This is known as “multi-model.”

Other access methods are available depending on the database, including full-text
search systems that allow natural language search requests. Requests can be made
for full or partial “fuzzy” matches, geographic ranges, or wildcard searches. The
response includes a JSON document with lists of matching document IDs, contextual
information, and a relevancy score.

Full-text search systems are often separate from a database but NoSQL databases
like Couchbase include them as part of the underlying system, allowing managers to
simplify the overall architecture.

Big data analytics are possible as well, using complimentary subsystems that process
larger volumes of historical data. Using advanced indexing and query capabilities,
also based on SQL++, more advanced analytics can be done in the same database
without needing a separate, external OLAP system.

Because the data is stored and indexed all within the one database product, it allows
developers to connect to one system and pass through the relevant requests.

OPERATE AT ANY SCALE

Databases that support web, mobile, and IoT applications must be able to operate
at any scale. While it is possible to scale a relational database like Oracle (using, for
example, Oracle RAC), doing so is typically complex, expensive, and not fully reliable.
With Oracle, for example, scaling out using RAC technology requires numerous
components and creates a single point of failure that jeopardizes availability.

By comparison, a NoSQL distributed database—designed with a scale-out
architecture and no single point of failure—provides compelling operational
advantages.

WHITEPAPER 15

Elasticity for performance at scale
Applications and services have to support an ever-increasing amount of users
and data—hundreds to thousands to millions of users, and gigabytes to terabytes
of operational data. At the same time, they have to efficiently scale to maintain
performance.

The database has to be able to scale reads, writes, and storage. This is a problem
for relational databases that are limited to scaling up—i.e., only being able to
scale by adding more processors, memory, and storage to a single physical server
(sometimes known as “vertical scaling”). As a result, the ability to scale efficiently, and
on demand, is a challenge. It becomes increasingly expensive, because enterprises
have to purchase bigger and bigger servers to accommodate more users and more
data. In addition, it can result in downtime if the database has to be taken offline to
perform hardware upgrades.

Excess Capacity
(Unnecessary Cost)

Positive User Experience
(Acceptable Server Performance)

Negative User Experience
(Poor Sever Performance)

Number of Current Users

Increase of Users Over Time

Se
rv

er
 L

oa
d

FIGURE 6

RDBMS – The server
is too big or too
small, leading to
unnecessary costs
or poor performance

A distributed NoSQL database runs on commodity hardware to scale out—i.e., add
more resources simply by adding more servers to a cluster (sometimes known
as “horizontal scaling”). The ability to scale out enables enterprises to scale more
efficiently by (a) deploying no more hardware than is required to meet the current
load; (b) applying less expensive hardware and/or cloud infrastructure; and (c) scaling
on demand and without downtime.

WHITEPAPER 16

Concurrent Users Concurrent Users

RDBMS NoSQL

Co
st

 ($
)

Co
st

 ($
)

FIGURE 7

RDBMS – Add
commodity servers
on demand so
the hardware
resources match
the application load

By distributing reads, writes, and storage across a cluster of nodes, NoSQL databases
are able to operate at any scale. Additionally, they are designed to be easy to
configure, install, and manage both small and large clusters.

Availability for always-on, global deployment
As more and more customer engagements take place online via web and mobile
apps, availability becomes a major concern. These mission-critical applications
have to be available 24 hours a day, 7 days a week—no exceptions. Delivering 24x7
availability is a challenge for relational databases that are deployed to a single
physical server or that rely on clustering with shared storage. If the single server
or shared storage fails, the database becomes unavailable, applications stop, and
customers disengage.

LOCAL
STORAGE

LOCAL
STORAGE

Applications

Database Instance

Applications

Database InstanceDatabase Instance Database Instance

FIGURE 8

RDBMS – The failure
of a server or storage
device brings down
the entire database

In contrast to relational technology, a distributed, NoSQL database partitions and
distributes data to multiple database instances with no shared resources. Couchbase
goes a step further and does this automatically.

WHITEPAPER 17

In addition, the data can be replicated to one or more instances for high availability
(intercluster replication) and in different geographic locations. While relational
databases like Oracle require separate software for replication, for example,
Oracle Active Data Guard, NoSQL databases do not—it’s built in and it’s automatic.
Couchbase’s cross data center replication (XDCR) feature also provides this
automatically.

In addition, automatic failover ensures that if a node fails, the database can continue
to perform reads and writes by sending the requests to a different node. Again,
Couchbase will perform this failover recovery and rebalancing automatically.

LOCAL
STORAGE

LOCAL
STORAGE

LOCAL
STORAGE

LOCAL
STORAGE

Applications

Database InstanceDatabase Instance Database Instance Database Instance

FIGURE 9

NoSQL – If an instance
fails, the application
can send requests to
a different one

Customer behavior often requires organizations to support multiple physical,
online, and mobile channels in multiple regions and often multiple countries. While
deploying a database to multiple data centers increases availability and helps with
disaster recovery, it also has the benefit of increasing performance too. All reads and
writes can be executed on the nearest data center, thereby reducing latency.

Ensuring global availability is difficult for relational databases where separate
add-ons are required—which increase complexity—or where replication between
multiple data centers can only be used for failover, because only one data center is
active at a time. Oracle, for example, requires Oracle GoldenGate. When replicating
between data centers, applications built on relational databases can experience
performance degradation or find that the data centers are severely out of sync.

DATABASE Replication Software

Data Center (Active) Data Center (Passive)

DATABASEReplication Software

FIGURE 10

RDBMS – Requires
separate software
to replicate data to
other data centers

WHITEPAPER 18

A distributed, NoSQL database includes built-in replication between data centers—
no separate software is required. In addition, some include bidirectional replication
enabling full active-active deployments to multiple data centers. This enables the
database to be deployed in multiple countries or regions while providing local data
access to local applications and their users.

Deploying to multiple data centers not only improves performance, but enables
immediate failover via hardware routers. Applications don’t have to wait for the
database to discover the failure and perform its own failover.

DATABASE

Data Center (Active)

DATABASE

Data Center (Active)

DATABASE

Data Center (Active)

FIGURE 11

RDBMS – Replication
between data centers
is fully built-in and
can be bidirectional

NOSQL IS A BETTER FIT FOR LARGE-SCALE REQUIREMENTS

As enterprises shift to cloud, mobile, social media, and big data technologies,
developers, architects, and operations teams have to build and maintain web,
mobile, and IoT applications faster, and at a greater scale. NoSQL is increasingly the
preferred database technology to power today’s web, mobile, and IoT applications.

Hundreds of Global 2000 enterprises, along with tens of thousands of smaller
businesses and startups, have adopted NoSQL. For many, the use of NoSQL started
with caching, proof of concept, or a small application, then expanded to targeted
mission-critical applications, and can become the foundation for all application
development. Today, the Couchbase NoSQL database serves thousands of these
types of customers.

With NoSQL, enterprises are better able to both develop with agility and operate
at any scale—and to deliver the performance and availability required to meet the
demands of businesses.

Modern customer experiences need a flexible database platform that can
power applications spanning from cloud to edge and everything in between.
Couchbase’s mission is to simplify how developers and architects develop,
deploy and consume modern applications wherever they are. We have
reimagined the database with our fast, flexible and affordable cloud database
platform Capella, allowing organizations to quickly build applications that
deliver premium experiences to their customers—all with best-in-class price
performance. More than 30% of the Fortune 100 trust Couchbase to power
their modern applications.

For more information, visit www.couchbase.com and follow us on Twitter.

© 2023 Couchbase. All rights reserved.

https://www.couchbase.com/

	Preface
	What is NoSQL?
	Customer experience drives enterprise to NoSQL solutions
	Supporting SQL and NoSQL developers
	Scaling beyond SQL databases

	Today’s trends—tomorrow’s challenges
	Five advantages of NoSQL databases

	Develop with agility
	Adaptable NoSQL schema requirements
	Flexibility for faster development
	Simplicity for easier development
	Grouping documents to ease access
	Querying using SQL
	What about ACID transactions in NoSQL?
	One data source­—multiple access methods

	Operate at any scale
	Elasticity for performance at scale
	Availability for always-on, global deployment

	NoSQL is a better fit for large-scale requirements

