
Why NoSQL Databases
for AI-Powered Apps?

An Architectural Guide
Why successful projects rely on

NoSQL database applications

WHITEPAPER

Contents
WHAT IS NOSQL? 3

Customers demand hyper-personalized experiences from adaptive applications 3

Relational vs. NoSQL: What’s the difference? 3

Supporting SQL and NoSQL developers 4

Scaling beyond SQL databases 4

TODAY’S TRENDS – TOMORROW’S CHALLENGES 5

Five advantages of NoSQL databases 5

DEVELOPER AGILITY 6

OPERATE AT ANY SCALE 7

Elasticity for performance at scale 7

Availability for always-on, global deployment 8

DATABASE-AS-A-SERVICE 10

BENEFITS OF DBAAS 11

NOSQL IS A BETTER FIT FOR LARGE-SCALE REQUIREMENTS 11

WHITEPAPER 2

WHITEPAPER 3

WHAT IS NOSQL?

NoSQL is a modern database management system that stores information in JSON
documents instead of the tables, columns, and rows used by relational databases.
It can deliver data for applications in ways that make development easier and more
robust. NoSQL databases can also serve as the basis for AI applications that need
ultimate adaptability now and into the future.

NoSQL databases are built from the ground up to be flexible, scalable, and capable
of rapidly responding to the data management demands of modern businesses.

This paper introduces the modern challenges that NoSQL databases address and
shows how multipurpose NoSQL delivers the flexibility that relational lacks and why.

Customers demand hyper-personalized experiences
from adaptive applications
For modern businesses, customer experience is the most important competitive
advantage, driving the need for adaptability in application development. To meet
these expectations, businesses must prioritize services that are on demand, real
time, resilient, and responsive.

Bringing together all of these new systems requires flexibility, performance, and
scalability and can consolidate multiple types of systems to reduce database sprawl.

Relational vs. NoSQL: What’s the difference?
Relational databases were born in the era of mainframes and back-office business
applications – long before the internet, the cloud, big data, mobile, artificial
intelligence, etc. In fact, the first commercial implementation was released by
Oracle in 1979. These databases were engineered to run on a single server – the
bigger, the better. The only way to increase the capacity of these databases was to
upgrade the server – processors, memory, and storage – to continually scale up as
Moore’s Law allowed.

NoSQL databases emerged as a result of the exponential growth of the internet and
the rise of web applications. Google Bigtable research was released in 2006, as well
as an Amazon DynamoDB research paper in 2007. Efficient distributed key-value (KV)
engines were essential to this evolutionary step and have propelled the technology
much further.

New databases were engineered to meet the next generation of enterprise
requirements, which companies like Couchbase have taken even further to meet
needs going into the future – the need to develop with agility and to operate at
any scale.

Agility means providing flexible schemas, APIs, AI integration, robust SQL-based
querying, many types of search, analytics, and more. Scalability allows data to grow
without sacrificing performance and stability.

RELATIONAL VS. NOSQL:
WHAT’S THE DIFFERENCE?

Relational databases were
born in the era of mainframes
and back-office business
applications – long before the
internet, the cloud, artificial
intelligence, big data, mobile,
artificial intelligence, etc.

WHITEPAPER 4

Supporting SQL and NoSQL developers
Traditional relational systems manage tabular data and return it as rows and columns.
NoSQL databases can do this without forcing application developers into using a static
tabular schema that has to be reworked every time there is a change. Instead, NoSQL
databases give developers the flexibility they need to help them excel at their work and
create adaptive applications that adjust to future needs.

NoSQL systems hold hierarchical JSON data, but return it to the application as full or
partial JSON data structures, full-text search matches, SQL query results, key-based
values, big data analytics systems, as well as AI vector searches.

This convergence of the best of relational and the best of modern NoSQL simplifies the
information architecture of enterprises and helps developers deliver applications more
efficiently with familiar concepts and tooling, without needing to learn and manage a
dozen different platforms.

Scaling beyond SQL databases
To operate at scale, NoSQL systems approach cluster-based computing with
efficient, automatic cluster management to keep data synchronized and flowing
at high speeds.

For example, teams are now expected to build enterprise data management
infrastructure that includes the following characteristics:

• Support large numbers of concurrent users (hundreds of thousands to millions)

• Deliver highly responsive experiences to a globally distributed base of users

• Be always available – no downtime

• Handle semi- and unstructured data

• Adapt rapidly to changing requirements with frequent updates and new features

SQL-based relational databases are unable to meet these requirements efficiently
and cost-effectively.

Consider just a few examples of Global 2000 enterprises that are deploying NoSQL
for mission-critical applications that have been featured in recent news reports:

• Tesco, Europe’s No. 1 retailer deploys NoSQL for e-commerce, product catalog,
and other applications

• Domino’s uses NoSQL to formulate highly targeted campaigns to incentivize
customers

• Ryanair, the world’s busiest airline uses NoSQL to power its mobile app serving
over 3 million users

• Marriott hosts 30 million documents, accessed at 4,000 transactions per second

• GE deploys NoSQL for its Predix platform to help manage the industrial internet

• PepsiCo uses NoSQL so that 30,000 users can perform operations without disruption

WHITEPAPER 5

TODAY’S TRENDS – TOMORROW’S CHALLENGES

Today’s customer experience goals depend on tightly aligned technical integration
more than ever before, but it must be able to adapt to trends going forward or risk
becoming outdated.

Some of the high-level technical goals include:

• Consolidated platforms that work together efficiently

• Simplified system architectures that are easy to manage

• Effective data “plumbing” for real-time web applications and low latency

• Distributed service layer that delivers data as close to the customer as possible

• Enhanced user interactions through integrated enterprise AI solutions

Five advantages of NoSQL databases
Ambitious customers with big ideas for how to use data have unleashed a new set of
technology requirements for CIOs and technical leaders.

Here are five trends that play into the advantages of NoSQL databases for
addressing the challenges of building software.

Trends Requirements

Customer shift
continues
online

• Scaling to support thousands or even millions of users
• Meeting UX requirements with consistently high performance
• Maintaining availability 24 hours a day, 7 days a week
• Deliver hyper-personalized experiences

The internet
is connecting
everything

• Supporting many different applications with different data structures
• Ensuring software is “always on” with no excuse for downtime
• Supporting continuous streams of data from the real-time web

Big data is
getting bigger
with AI

• Storing customer-generated semi- and unstructured data
• Storing different types of data from different sources in the same

infrastructure or even the same cluster
• Storing data generated by thousands or millions of customers, and

IoT devices
• Integrating with external data systems powered by AI and large

language models (LLMs)

Applications
are moving
to the cloud

• Scaling on demand to support more customers, and store more data
• Operating fully managed applications on a global scale to support

customers worldwide
• Minimizing infrastructure and operating costs, achieving a faster time

to market

The world has
gone mobile

• Creating “offline-first” apps – network connection not required
• Synchronizing mobile/edge data with remote databases in the cloud
• Supporting multiple mobile platforms with a single backend

“ We chose Couchbase for its

memory-first architecture,

which enables us to perform

writes of our catalog at peak

load consistently. Instead of

doing it every two hours we

can do it every 15 minutes.”

 — MRITUNJAY SINGH,
LEAD CONSULTANT, BT

 Case study:
www.couchbase.com/
customers/bt

https://www.couchbase.com/customers/bt
https://www.couchbase.com/customers/bt

WHITEPAPER 6

The above requirements are extensive and challenge even the best systems to do
even more with less. Today’s extreme requirements can be loosely grouped into two
categories that impact two different levels of end users:

• Providing agile platforms for application developers to excel

• Supporting scalable system architectures that outperform others

DEVELOPER AGILITY

To remain competitive, enterprises must innovate – and now they have to do it faster
than ever before. Developers are under extraordinary pressure. Speed is critical, but
so is agility, since these applications evolve far more rapidly than legacy applications.
Relational databases have a restricted, flat data structure and don’t respond well to
frequent changes in the data model. This often impedes the needs of modern, agile
projects, applications, and business requirements.

Application developers that are used to querying and performing transactions
with SQL can continue to use the same language in NoSQL platforms but operate
against the JSON data that is stored. For example, Couchbase provides a SQL-based
query standard known as SQL++ that returns results in JSON with sets of rows
and subdocument components where appropriate. This is in contrast to the vast
majority of other NoSQL databases (like MongoDB™) that don’t use SQL and require
developers to climb a new language learning curve.

The combination of transactional capabilities and SQL greatly expands the number
of use cases where a NoSQL database can be considered. In the past, the inability
to join or handle transactional operations meant that NoSQL databases were only
chosen for the highest volume and scale use cases. But the option of using SQL
and transactions means that NoSQL databases can also be chosen for traditional
database use cases that need more flexibility and power.

NoSQL databases operate as a multipurpose primary content store, meaning you
enter the data in one application but can access it multiple ways depending on
the use case. For example, developers can use direct API calls to access a specific
document using a key or through a SQL query that returns multiple rows of data
in a JSON response. This is known as “multi-model.”

Other access methods are available depending on the database, including robust
search systems for AI vector searching of LLMs that find similarity and context
matches in data. There are also full-text search systems that allow natural language
search requests. Requests can be made for full or partial “fuzzy” matches, geographic
ranges, or wildcard searches. The response includes a JSON document with lists of
matching document IDs, contextual information, and a relevancy score.

Search systems are often separate from a database but NoSQL databases like
Couchbase include them as part of the underlying system, allowing managers to
simplify the overall architecture.

Big data analytics are possible as well, using complementary subsystems that
process larger volumes of historical data. Using advanced indexing and query

“ For us to set up a resilient

implementation of

Couchbase, it took us

minutes. We stood up three

servers, lit’em up, balanced

the load, and instantly we

were resilient.”

 — ROBERT LAWRENCE,
PRODUCT OWNER,
DIGITAL CATALYSRS, PG&E

Case study:
www.couchbase.com/
customers/PG&E

https://www.couchbase.com/customers/pge/
https://www.couchbase.com/customers/pge/

capabilities, also based on SQL++, more advanced analytics can be done in the same
database without needing a separate, external OLAP system.

Because the data is stored and indexed all within the one database product, it
allows developers to connect to one multipurpose system and pass through the
relevant requests.

OPERATE AT ANY SCALE

Databases that support web, mobile, AI, and IoT applications must be able to operate
at any scale. While it is possible to scale a relational database like Oracle (using, for
example, Oracle RAC), doing so is typically complex, expensive, and not fully reliable.
With Oracle, for example, scaling out using RAC technology requires numerous
components and creates a single point of failure that jeopardizes availability.

By comparison, a NoSQL distributed database – designed with a scale-out architecture
and no single point of failure – provides compelling operational advantages.

Elasticity for performance at scale
Applications and services have to support an ever-increasing amount of
users and data – hundreds to thousands to millions of users, and gigabytes
to terabytes of operational data. At the same time, they have to efficiently scale
to maintain performance.

The database has to be able to scale reads, writes, and storage. This is a problem
for relational databases that are limited to scaling up – i.e., only being able to
scale by adding more processors, memory, and storage to a single physical server
(sometimes known as “vertical scaling”). As a result, the ability to scale efficiently,
and on demand, is a challenge. It becomes increasingly expensive because
companies have to purchase bigger and bigger servers to accommodate more users
and more data. In addition, it can result in downtime if the database has to be taken
offline to perform hardware upgrades.

Excess Capacity
(Unnecessary Cost)

Positive User Experience
(Acceptable Server Performance)

Negative User Experience
(Poor Server Performance)

Number of Concurrent Users

Increase of Users Over Time

Se
rv

er
 L

oa
d

Server Capacity
RDBMS – The server
is too big or too
small, leading to
unnecessary costs
or poor performance

WHITEPAPER 7

WHITEPAPER 8

A distributed NoSQL database runs on commodity hardware to scale out – i.e.,
add more resources simply by adding more servers to a cluster (sometimes known
as “horizontal scaling”). The ability to scale out enables companies to scale more
efficiently by (a) deploying no more hardware than is required to meet the current
load; (b) applying less expensive hardware and/or cloud infrastructure; and (c)
scaling on demand and without downtime.

Concurrent Users Concurrent Users

RDBMS NoSQL

Co
st

 ($
)

Co
st

 ($
)

NoSQL – Add
commodity servers
on demand so
the hardware
resources match
the application load

By distributing reads, writes, and storage across a cluster of nodes, NoSQL databases
are able to operate at any scale. Additionally, they are designed to be easy to
configure, install, and manage both small and large clusters.

Availability for always-on, global deployment
As more and more customer engagements take place online via web and mobile
apps, availability becomes a major concern. These mission-critical applications
have to be available 24 hours a day, 7 days a week – no exceptions. Delivering 24x7
availability is a challenge for relational databases that are deployed to a single
physical server or that rely on clustering with shared storage. If the single server
or shared storage fails, the database becomes unavailable, applications stop, and
customers disengage.

LOCAL
STORAGE

SHARED
STORAGE

Application(s)

Database Instance

Application(s)

Database InstanceDatabase Instance Database InstanceRDBMS – The failure
of a server or storage
device brings down
the entire database

ALWAYS-ON AVAILABILITY

In contrast to relational
technology, a distributed,
NoSQL database partitions
and distributes data
to multiple database
instances with no shared
resources. Couchbase goes
a step further and does this
automatically.

WHITEPAPER 9

In contrast to relational technology, a distributed, NoSQL database partitions and
distributes data to multiple database instances with no shared resources. Couchbase
goes a step further and does this automatically.

In addition, the data can be replicated to one or more instances for high
availability (intercluster replication) and in different geographic locations. While
relational databases like Oracle require separate software for replication, for
example, Oracle Active Data Guard, NoSQL databases do not – it’s built in and it’s
automatic. Couchbase’s cross data center replication (XDCR) feature also provides
this automatically.

In addition, automatic failover ensures that if a node fails, the database can continue
to perform reads and writes by sending the requests to a different node. Again,
Couchbase will perform this failover recovery and rebalancing automatically.

LOCAL
STORAGE

LOCAL
STORAGE

LOCAL
STORAGE

LOCAL
STORAGE

Application(s)

Database InstanceDatabase Instance Database Instance Database InstanceNoSQL – If an instance
fails, the application
can send requests to
a different one

Customer behavior often requires organizations to support multiple physical,
online, and mobile channels in multiple regions and often multiple countries. While
deploying a database to multiple data centers increases availability and helps with
disaster recovery, it also has the benefit of increasing performance too. All reads and
writes can be executed on the nearest data center, thereby reducing latency.

Ensuring global availability is difficult for relational databases where separate
add-ons are required – which increase complexity – or where replication between
multiple data centers can only be used for failover, because only one data center is
active at a time. Oracle, for example, requires Oracle GoldenGate. When replicating
between data centers, applications built on relational databases can experience
performance degradation or find that the data centers are severely out of sync.

DATABASE Replication Software

Data Center (Active) Data Center (Passive)

DATABASEReplication Software

RDBMS – Requires
separate software
to replicate data to
other data centers

WHITEPAPER 10

A distributed, NoSQL database includes built-in replication between data centers –
no separate software is required. In addition, some include bi-directional replication
enabling full active-active deployments to multiple data centers. This enables the
database to be deployed in multiple countries or regions while providing local data
access to local applications and their users.

Deploying to multiple data centers not only improves performance, but enables
immediate failover via hardware routers. Applications don’t have to wait for the
database to discover the failure and perform its own failover.

DATABASE

Data Center (Active)

DATABASE

Data Center (Active)

DATABASE

Data Center (Active)

NoSQL – Replication
between data centers
is fully built-in and
can be bi-directional

DATABASE-AS-A-SERVICE

Many companies are looking to reduce their operational efforts and costs of running
software and hardware, with databases increasingly becoming a common area for
consideration. Typically a Database-as-a-Service, or DBaaS, streamlines and improves
operations in areas like IaaS setup and configuration, database provisioning,
operations management, scaling automation, monitoring, and security.

Operational management reduces many of the tasks of maintaining a database
environment, allowing companies to focus more time and effort on core business
activities. These operational processes can include ongoing configuration, patching,
upgrades, backup and recovery activities, and overall system monitoring.

WHITEPAPER 11

BENEFITS OF DBAAS

• Rapid setup

• Easily scale or evolve
configurations

• High service levels

• Security automation

BENEFITS OF DBAAS

DBaaS offerings limit the work of often overstretched IT teams, providing convenience
and opportunities to focus on more high-value projects. New databases can often be
spun up in minutes instead of a traditional multi-week provisioning process.

From a financial and business perspective, companies see benefits like:

• Rapid setup – DBaaS capabilities allow users to provision new database instances
when needed in a self-service, highly automated fashion. Developers can more
quickly test out new projects to drive company innovation.

• Easily scale or evolve configurations – As the needs of users and applications
change, modify the configuration of clusters to match those needs. The database
makes it easy to match regional needs and keep up with regulatory changes.

• High service levels – Most DBaaS systems provide at least a 99% uptime SLA, and
often much higher. Replication and redundancy architecture improve quality even
further as deployments go global.

• Security automation – Advanced DBaaS systems build in multiple levels of
security and encryption to protect data at rest, in transit, and throughout the
data’s lifecycle.

NOSQL IS A BETTER FIT FOR LARGE-SCALE REQUIREMENTS

As enterprises shift to cloud, mobile, social media, AI, and big data technologies,
developers, architects, and operations teams have to build and maintain web,
mobile, and IoT applications faster, and at a greater scale. NoSQL is increasingly
the preferred database technology to power today’s web, mobile, IoT, and
AI-powered applications.

Hundreds of Global 2000 enterprises, along with tens of thousands of smaller
businesses and startups, have adopted NoSQL. For many, the use of NoSQL
started with caching, a proof of concept, or a small application, then expanded to
targeted mission-critical applications. Today, the Couchbase NoSQL database serves
thousands of these types of customers.

With NoSQL, enterprises are better able to both develop with agility and operate
at any scale – and deliver the performance and availability required to meet the
demands of businesses.

Modern customer experiences need a flexible database platform that can
power applications spanning from cloud to edge and everything in between.
Couchbase’s mission is to simplify how developers and architects develop,
deploy and consume modern applications wherever they are. We have
reimagined the database with our fast, flexible and affordable cloud database
platform Capella, allowing organizations to quickly build applications that
deliver premium experiences to their customers – all with best-in-class price
performance. More than 30% of the Fortune 100 trust Couchbase to power
their modern applications.

For more information, visit www.couchbase.com and follow us on Twitter.

© 2024 Couchbase. All rights reserved.

https://www.couchbase.com/

	What is NoSQL?
	Customers demand hyper-personalized experiences from adaptive applications
	Relational vs. NoSQL: What’s the difference?
	Supporting SQL and NoSQL developers
	Scaling beyond SQL databases

	Today’s trends – tomorrow’s challenges
	Five advantages of NoSQL databases

	Developer agility
	Operate at any scale
	Elasticity for performance at scale
	Availability for always-on, global deployment

	Database-as-a-Service
	Benefits of DBaaS
	NoSQL is a better fit for large-scale requirements

