ations

uchbase

TABLE OF CONTENTS
Introduction

Best-of-Breed
Technologies

Apache Spark
Couchbase Server

Why Use Spark and
Couchbase Together?

Using Spark and
Couchbase Together

Use Cases
Conclusion

Additional Resources

e Couchbase

Accelerating Data-Driven Applications
With Couchbase and Spark

Introduction

In the world of “big data,” data is a treasured asset. However, it’s not the data itself that is valu-
able - it's the actionable insights that it can generate. That insight allows companies to better
interact with their customers, offer enhanced individualized services, provide better products, and
ultimately be more competitive and successful. Manufacturing companies can model component
reliability and predict failures before they happen, avoiding costly recalls. Utility companies can
compare real-time sensor data to models that identify and adjust operations before outages occur.
Customer-centric services can provide information and recommendations that are individually
tailored. These are just a few examples of how actionable insights can be used to reduce operating
costs, increase revenue, and improve customer service quality within a company.

Crucial factors in leveraging these operational advantages is the time-to-insight (the length of
time it takes to analyze the data and turn it into actionable information) and time-to-action (the
length of time it takes to communicate that actionable information to users, customers, and
automated applications). The traditional approach to turning raw data into actions is to collect
data in multiple operational systems, use nightly batch ETL (Extract Transform Load) processes

to load the data into an analytical platform, crunch the data, and then finally push the generated
analytical results to yet another platform that serves to inform users, customers, and applications.
This approach is no longer acceptable - it simply takes too long. Because time-to-insight and time-
to-action are critical, real-time analytics against live operational data yielding immediate action-
able results has become an absolute requirement. Low-latency, high volume NoSQL operational
databases like Couchbase, combined with scalable in-memory processing platforms like Apache
Spark provides the competitive edge that innovative companies are searching for - near real-time
actionable insights based on rich analytics and sophisticated machine learning.

Best-of-Breed Technologies

In the early days of big data, Hadoop MapReduce jobs were the most commonly used approach

to building distributed, scalable analytics. Many of these solutions are still in use today. However,
Apache Spark has clearly become the successor to Hadoop MapReduce for analytical and machine
learning workloads due to its ease of use and in-memory performance.

NoSQL databases are the go-to technology for operational databases, due to their scalability, per-
formance, flexibility, and lower operational cost. Couchbase is the leading NoSQL database with

a scale-out, memory-first, shared nothing architecture, a powerful SQL-based query language for
JSON documents, and a secure database platform that provides high availability, scalability, and
performance. Companies like General Electric, Marriott, United Airlines, and many others have
implemented mission-critical operational databases using Couchbase to address the demanding
and changing requirements of the Internet of Things (1oT), Hospitality Management, Transporta-
tion Management, Financial Services, Retail, and eCommerce, just to name a few applications.

Combining the leading in-memory analytics processing engine (Apache Spark) with the leading
memory-first architectured NoSQL database (Couchbase Server) enables organizations to exe-
cute real-time analytics that lead to real-time, actionable operational insights. Spark jobs can be
executed directly against operational data managed by Couchbase without the time, expense, and
overhead of traditional disk-based ETL processes.

Combining Apache
Spark with Couchbase
Server enables real-time
analytics and

actionable insights.

A high throughput, low-
latency data source and
target is critical in order to
leverage the performance
of Spark.

USER PROFILE
z@(%% 44 = spark’
END USERS WEB / MOBILE APP PRODUCT INFO APACHE SPARK

MARKETING DATA

/
Vs
7
= -~
@ |t —

OFFERS

Couchbase Server

Data + Analytics = Actionable Results

Apache Spark

Apache Spark™ is an open source, distributed, in-memory data processing platform built to pro-
vide low-latency analytics. It was created at AMPLab in University of California, Berkeley as part
of the Berkeley Data Analytics Stack (BDAS) in 2009 and later released as an Apache project. Since
then, it has become the fastest growing Apache project ever, with over a thousand contributors.'
Modern web, mobile, and loT applications leverage Spark to rapidly process huge volumes of

data, performing complex analytics and machine learning algorithms in parallel with built-in fault
tolerance.

In-memory Resilient Distributed Datasets (RDDs) are the fundamental data structure within
Apache Spark. Using RDDs, data analysts can easily build rich analytics, data processing, and
machine learning applications in a variety of common languages including Java, Python, Scala,
and R. RDDs provide a generalized data abstraction for a wide variety of data sources and targets,
including any Hadoop data source, Flume, Kafka, Twitter, NoSQL, relational databases, and many
more. RDDs form the basis for higher level data abstractions within Spark, such as DataFrames,
Datasets, and DStreams which simplify processing the raw data. Apache Spark applications read
and write RDDs to bring in the source data for processing and to write out the processed data
results, interacting with a data store at both ends of the process. Providing a high throughput,
low-latency data source and target is critical in order to leverage the in-memory performance
advantages of Spark.

| ETL | |SPARK SQL | |SPARK STREAMING | | MACHINE LEARNING | | GRAPH PROCESSING

~

Spark

TOOLKIT

' Databricks: Apache Spark 2015 Year In Review

[https://databricks.com/blog/2016/01/05/apache-spark-2015-year-in-review.html]

https://databricks.com/blog/2016/01/05/apache-spark-2015-year-in-review.html

@ Learn more about
Apache Spark.

Couchbase data
operations are performed
through a high-speed,
in-memory cache for
maximum throughput and
minimal latency.

@ Learn more about
Couchbase Server.

Apache Spark users can use command line, ad hoc, and program- © 9
matic APIs. The common Apache Spark core library supports mul- - § 2 _
tiple data processing libraries including Spark SQL, Spark Stream- g S [|28 ‘EE
ing, MLIib for machine learning, and GraphX for graph traversal. 5 «Z» Eg §§
Developers can combine these libraries seamlessly within the “ « g
same application. Based on a distributed, in-memory architecture 5 3
Spark processing enriches, analyzes, and augments data 10-100
times faster than Hadoop MapReduce. It automatically distrib-
utes tasks to fault tolerant worker processes, which can auto- SpQI"’,(\Z
matically recover from failures. Apache Spark applications can be
developed on a simple, single-node workstation and deployed to a APACHE SPARK
multi-node cluster without changing the application code.

Apache Spark Libraries

Couchbase Server

Couchbase Server is the leading NoSQL database, designed with a distributed, memory-first,
shared nothing architecture that ensures high performance, scalability, and availability. It man-
age rich, flexible JSON documents as well as simple key-value pairs. Couchbase Server includes

a SQL query language, called N1QL (pronounced “nickel”), that allows application developers to
use a universally understood query paradigm against JSON documents. The flexibility of JSON
allows developers to change their application without having to change or migrate the underlying
schema. With N1QL, developers can build applications easier and faster by leveraging the power
of SQL with the flexibility of JSON. Couchbase Server includes rich indexing options to acceler-
ate query and key-value data access. All data operations are performed through a configurable
high-speed, in-memory cache, thereby providing an extremely high read/write throughput rate
with millisecond latency. Couchbase Server supports a simple, flexible configuration that enables
both scale-out and scale-up scenarios. It also provides built-in, high-speed in-memory replication,
failover detection, and high availability capabilities.

DATA SERVICE INDEX SERVICE
e I STORAGE

MANAGED INDEXING
CACHE ENGINE

MANAGED
CACHE

INIONI M3IIA

MANAGED
CACHE

STORAGE
STORAGE STORAGE

NODE MANAGER CLUSTER MANAGER

COUCHBASE SERVER NODE

Couchbase Server Node Components

Couchbase Server is application developer-friendly, with built-in integration to frameworks like Spring
and Ottoman ODM for Node.js. It provides programmatic APIs in many languages including Java, C,
Go, Node.js, PHP, Python, and .NET. It provides rich integration with Big Data tools including Hadoop,
Storm, Kafka, and Elasticsearch in addition to the Couchbase Spark Connector. Like Spark, Couchbase
applications can be developed on a simple, single-node workstation and deployed to a multi-node
cluster without changing the application code. Application developers can leverage the flexibility and
power of SQL for JSON, the flexible data model, powerful query capabilities, and scalable architecture
to build highly responsive applications using less code in less time.

? InfowWorld: Five things you need to know about Hadoop v. Apache Spark
[http://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html]

https://databricks.com/spark/about
http://www.couchbase.com/nosql-databases/couchbase-server
http://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html

For Spark users,
Couchbase provides the
lowest latency, highest
throughput, most reliable
NoSQL data source

and target.

For Couchbase users,
Spark enables rich,
scalable analytics to their
operational applications.

Why Use Spark and Couchbase Together?

Why use Spark and Couchbase together? Well, it depends on the problem that you're trying to solve.
For some developers, it may be about integration and adding analytics and machine learning to your
Couchbase operational application. For others, it may be about adding a high performance, low-la-
tency, scalable database to their existing Spark processing, or extending the usefulness of the analyt-
ical results by persisting them to a NoSQL operational database platform that can reach millions of
customers.

For Spark users, Couchbase provides the lowest latency, highest throughput, most reliable NoSQL data
source and target available, thus accelerating your analytical and machine learning applications and re-
ducing the overall time it takes to go from raw data to actionable insights. Additionally, the Couchbase
Spark Connector provides the most complete Spark/NoSQL integration available, unlike some other
Spark connectors on the market that have uneven integration and built-in limitations. The Couchbase
Spark Connector supports all of the common Spark data structures and libraries, including Spark Core
(RDDs), Spark SQL (Datasets, DataFrames), and Spark Streaming (DStreams) for both read and write
operations. Additionally, through the N1QL query language Spark users can leverage a broad set of use-
ful extensions for working with flexible JSON schemas, including INFER, NEST, UNNEST, IS MISSING,
and functions over arrays and nested objects, which are not available natively in Spark SQL.

For Couchbase users looking to add rich, scalable analytics to their operational database applications,
Apache Spark is a great fit. It provides the same “Develop With Agility, Deploy at Any Scale” approach
that they are already familiar with in Couchbase, as well as a rich set of analytical functions and
machine learning capabilities. The Couchbase Spark Connector allows Couchbase data to be read by
or automatically streamed to Spark applications, and to quickly write the resulting insights back into
Couchbase in order to make them actionable at scale. Applications can utilize Spark to analyze and
enrich the Couchbase data. Some specific examples include:

= Advanced Analytics. Perform data analysis and machine learning, persisting the results back
into Couchbase.

= Data Aggregation and Integration. Combine data from multiple data sources into Couchbase to
provide a comprehensive view, a common requirement for Customer and Product 360 applications.

= Data Enrichment. Add data, from other sources or as the result of an analytical process, to
existing data already in Couchbase. This is a common element of product recommendation,
product promotion, and fraud detection applications, which add data based on analytics and
predictive models to an existing customer profile for big performance gains.

= ETL. Transform data inside or outside of Couchbase and store back into Couchbase, a common
task in data aggregation or data cleansing applications.

= Streaming Analytics. Database updates are streamed and analyzed in real time in Spark,
resulting in near real-time insights and immediate action. Common in cases where Couchbase
manages real-time operational data like security logs, click streams, shopping carts, financial
transactions, loT, and mobile information.

Use Couchbase and
Spark together to enrich
operational data and
generate actionable
insights.

@ Learn more about
working with RDDs.

@ Learn more about

DataFrames and Spark.

@ Learn more about
Spark Streaming with
Couchbase.

Using Spark and Couchbase Together

The Couchbase Spark Connector provides APIs for Java and Scala with support for Maven and sbt
respectively, making it easy to integrate them and get started. As a developer, you can build Java or
Scala applications using the development environment of your choice, or simply start by using the
Spark Shell.

There are several ways to bring Couchbase data into a Spark context:

= RDDs. A common scenario is to create resilient distributed datasets (RDDs) out of documents
stored in Couchbase. When you need to extract data out of Couchbase, the Couchbase Spark
Connector creates RDDs for you. You can create and persist RDDs by using either Couchbase
key-value pairs, views, spatial views, or NTQL (SQL).

= DataFrames. In order to use Spark SQL queries, you need to create and persist DataFrames
via the Spark SQL DataFrame API. A Spark DataFrame is like an RDD, but it includes a schema.
The Couchbase Spark Connector provides support for automatic schema inference, as well as
manual schema specification when creating the DataFrame. The Couchbase Spark Connector
supports both implicit imports using Scala, as well as direct access using other languages of
DataFrames to bring data in from Couchbase. The Connector also allows Spark applications to
persist DataFrames to Couchbase.

= Datasets. Introduced in Apache Spark 1.6, Datasets are a type-safe version of DataFrames with
compile time checks, built-in performance optimizations, and a convenient object-oriented
interface to a wide array of programming languages.

= DStreams. The Couchbase Spark Connector works with Spark Streaming by using the Couch-
base Server replication protocol (called DCP) to receive mutations from the server as they
happen and provide them to you in the form of a Spark DStream. You can create and persist
DStreams.

The Couchbase Spark Connector is aware of the Couchbase cluster topology (where the nodes and
the services within the Couchbase cluster are located). This provides a couple of advantages:

1. Operations on Spark RDDs, DataFrames, Datasets, and DStreams do not need to know where
the Couchbase data is stored or organized. The Couchbase cluster can be changed without having
to change the Spark applications. The Couchbase Spark Connector will ensure that operations are
automatically sent to the appropriate Couchbase Server nodes.

2. The Couchbase Spark Connector can pass node location hints back to the Spark processor, al-

lowing the Spark scheduler/dispatcher to use co-located workers when appropriate. This reduces the
amount of data transfer around the network and improves performance of the Spark applications.

Here is a quick example using the Spark Shell:

>$SPARK_HOME /bin/spark-shell --packages com.couchbase.client:spark-connector 2.10:1.2.0

http://developer.couchbase.com/documentation/server/current/connectors/spark-1.0/working-with-rdds.html
http://developer.couchbase.com/documentation/server/4.1/connectors/spark-1.0/spark-sql.html
http://developer.couchbase.com/documentation/server/current/connectors/spark-1.0/spark-streaming.html
http://developer.couchbase.com/documentation/server/current/connectors/spark-1.0/spark-streaming.html

Once in the Shell, you can choose to perform key-value or query-based operations and queries. An
example of a simple key-value operation using an RDDs would be as follows:

scala> import com.couchbase.client.java.document.JsonDocument
import com.couchbase.client.java.document.JsonDocument

scala> import com.couchbase.client.java.document.json.JsonObject
import com.couchbase.client.java.document.json.JsonObject

scala> sc.parallelize(Seq(JsonDocument.create(“mydoc”, JsonObject.create().put(“hello”,
“spark”)))).saveToCouchbase()

scala> sc.parallelize(Seq(“mydoc”)).couchbaseGet[JsonDocument]().foreach(println)

JsonDocument{id="mydoc’, cas=39773408329728, expiry=0, content={“hello”:”spark”}, muta-
tionToken=null}

An example of a simple query operation using DataFrames that takes advantage of the Spark SQL and
Couchbase N1QL integration:

scala> val airlines = sqglContext.read.couchbase(schemaFilter = org.apache.spark.sql.
sources.EqualTo(“type”, “airline”))

15/10/20 15:02:51 INFO N1QLRelation: Inferring schema from bucket travel-sample with
query ‘SELECT META(‘travel-sample').id as 'META_ID', ‘travel-sample'.* FROM ‘trav-
el-sample’ WHERE ‘type' = ‘airline’ LIMIT 1000’

15/10/20 15:02:52 INFO N1QLRelation: Inferred schema is StructType(StructField(META_
ID,StringType,true), StructField(callsign,StringType,true), StructField(country,String-
Type,true), StructField(iata,StringType,true), StructField(icao,StringType,true),
StructField(id,LongType,true), StructField(name,StringType,true), StructField(-

type, StringType, true))

airlines: org.apache.spark.sql.DataFrame = [META_ID: string, callsign: string, country:
string, iata: string, icao: string, id: bigint, name: string, type: string]
scala> airlines.printSchema

root

|-- META_ID: string (nullable = true)
|-- callsign: string (nullable = true)
|-- country: string (nullable = true)
|-- iata: string (nullable = true)

|-- icao: string (nullable = true)

|-- id: long (nullable = true)

|-- name: string (nullable = true)

|-- type: string (nullable = true)

”»

scala> airlines.select(“name”, “callsign”).sort(airlines(“callsign”).desc).show(5)

S [TR R +
| name | callsign |
S [TR R +
| Aws express | aws |
[Atifly | atifly |
XAIR USA	XAIR
World Airways	WORLD
Western Airlines	WESTERN
S [TR R +

For detailed information on the Couchbase Spark Connector as well as full examples, please see the
Spark Connector Developer Guide.

http://developer.couchbase.com/documentation/server/current/connectors/spark-1.2/spark-intro.html

Use Cases

Modern applications are using Apache Spark for scalable, high performance analytics and machine
learning. Customers are using NoSQL and Couchbase for scalable, low-latency operational database
applications. But what kinds of solutions are being deployed today that combine both technologies?
Here are just a few examples:

= Real-time recommendations: Many eCommerce applications recommend products to shop-
pers based on various data such as demographic profile, purchase history, web history, geo-
graphic location, web session context, etc. Using the connector, Spark applications can analyze
this diverse data and pass the results to Couchbase, where the application uses the results to
make specific recommendations, promotions, or discounts directly to customers.

= Component failure detection: 10T sensor-driven applications are often used to evaluate and
predict product or component failures. Using the connector, Spark can apply existing failure
data models and complex machine learning algorithms to incoming sensor data (possibly being
streamed from Couchbase) and then pass the results to Couchbase, where automated applica-
tions can take action based on the results of the analysis.

= Network intrusion detection: Network monitoring systems typically store network topology
and intrusion history in a low-latency NoSQL database like Couchbase for fast access. Network
access logs are often accumulated in a Hadoop Distributed File System (HDFS). Using the con-
nector, Spark processes can read the access logs looking for signs of network intrusion. The Spark
processes can execute joins (using DataFrames) or fast data lookups (using RDDs) of network
access-point metadata, configuration information, and past network attack models stored in
Couchbase and then record the results of that analysis in Couchbase for immediate action.

" Fraud detection: Similar to component failure detection and network intrusion detection, fraud
detection is about using analytics to identify one or more related events that match an existing
model. Using the connector, Spark processes can examine transactions in a real-time data stream
or from a historical repository, looking for signs of fraud. These analytical processes can execute
joins or fast lookups of customer profile data, vendor information, and known fraud models stored
in Couchbase and record the results of that analysis in Couchbase for immediate action.

" Product and Customer 360: In order to effectively interact with a customer or provide product
recommendations it is necessary to know as much about the product and the customer as pos-
sible. A common challenge is that the relevant customer and/or product information is often
stored across multiple applications and database repositories of record. Using the connector,
Spark processes can aggregate data from multiple sources, thereby building a rich customer
and product profile in a centralized “360 degree” repository for use by highly scalable, custom-
er-facing applications and services.

=

2440 West El Camino Real | Ste 600
Mountain View, California 94040

1-650-417-7500

www.couchbase.com

Conclusion

Modern applications generate massive amounts of operational data. Turning that data into sustainable
competitive advantage requires big data analytical processing systems like Spark working together
with flexible, scalable NoSQL databases like Couchbase. Deriving the competitive advantage from the
raw data is the result of complex analytical and machine learning processes, which are implemented by
massively scalable, high performance in-memory processing engines like Apache Spark. Apache Spark,
in turn, relies on the performance and scalability of its data sources and targets. Couchbase provides
the industry leading high performance, low-latency, scalable NoSQL database. By using the Couchbase
Spark Connector, Spark users can accelerate their analytical and machine learning processes, thus
reducing the time it takes to produce actionable insights from the raw data. By using Spark, Couchbase
users can extend their application capabilities, enhancing their customer experience and increasing
their operational efficiency and competitiveness. The Couchbase Spark Connector allows customers to
combine these two best-of-breed technologies designed for ease of use and flexible scalability.

Additional Resources

Couchbase Spark Connector Data Sheet

Couchbase Server Overview

Couchbase Big Data Connectors

Getting Started With the Couchbase Spark Connector
Getting Started With Couchbase Server

About Couchbase

Couchbase delivers the database for the Digital Economy. Developers around the world choose Couchbase for its advantages in
data model flexibility, elastic scalability, performance, and 24x365 availability to build enterprise web, mobile, and loT applications.
The Couchbase platform includes Couchbase, Couchbase Lite - the first mobile NoSQL database, and Couchbase Sync Gateway.
Couchbase is designed for global deployments, with configurable cross data center replication to increase data locality and avail-
ability. All Couchbase products are open source projects. Couchbase customers include industry leaders like AOL, AT&T, Cisco,
Comcast, Concur, Disney, Dixons, eBay, General Electric, Marriott, Nordstrom, Neiman Marcus, PayPal, Ryanair, Rakuten / Viber,
Tesco, Verizon, Wells Fargo, as well as hundreds of other household names. Couchbase investors include Accel Partners, Adams
Street Partners, Ignition Partners, Mayfield Fund, North Bridge Venture Partners, Sorenson Capital and WestSummit Capital.

http://www.couchbase.com/binaries/content/assets/us/product/connectors/spark-connector.pdf
http://www.couchbase.com/nosql-databases/couchbase-server
http://www.couchbase.com/bigdata
http://developer.couchbase.com/documentation/server/current/connectors/spark-1.0/spark-intro.html#concept_l11_ppm_pp
http://www.couchbase.com/get-started-developing-nosql

