
WHITEPAPER

Relational to
NoSQL: Getting

Started From
SQL Server

WHITEPAPER 2

WHY THE SHIFT TO NOSQL?

As enterprises modernize, teams have to build and maintain applications more
rapidly and at greater scale. Applications must be resilient and available whether
their clients are web, mobile, or the Internet of Things (IoT). If any of these channels
fail, customers go elsewhere. Today, enterprises in every industry from travel,
to technology, to retail and services are leveraging NoSQL database technology
for more agile development, reduced operational costs, and scalable operations.
For many, the use of NoSQL started with a cache, proof of concept (POC), or small
application, then expanded to targeted mission-critical applications. NoSQL has now
become a foundation for modern web, mobile, and IoT application development.

Some of the largest internet and enterprise companies are using NoSQL technology
to deploy their mission-critical applications. Examples include:

• �Gannett publisher of USA Today and 90+ media properties, replaced relational
database technology with NoSQL to power its digital publishing platform

• �Marriott deployed NoSQL to modernize its hotel reservation system that
supports $38 billion in annual bookings

• �FHL Bank Topeka integrates NoSQL with SQL Server to speed up access to
customer financial data for its 770 member banks

• �Cars.com with over 30 million visits per month, replaced SQL Server with
NoSQL to store customer and vehicle data

Couchbase has enabled hundreds of enterprises, growth companies, and startups to
deploy NoSQL for better flexibility, fast performance, and affordable costs. The goal
of this paper is to help you introduce NoSQL into your organization by highlighting
lessons learned from teams that successfully adopted NoSQL. We’ll explore key
considerations and strategies for transitioning to NoSQL, in particular, to a document
database (Couchbase Server or Couchbase Capella™ DBaaS), with tips for moving
from SQL Server and other relational databases. Note, there are use cases in which
NoSQL is not a replacement for, but a complement to, existing infrastructure,
facilitating the use of polyglot persistence.

We’ll start with recommendations for identifying and selecting the right application.
Next, we’ll cover strategies for modeling relational data as documents, how to access
them within your application, and how to migrate data from a relational database.
Finally, we’ll highlight the basics of operating a NoSQL database in comparison to a
relational database.

TOP 5 REASONS COMPANIES REPLACE
SQL SERVER WITH A NOSQL DATABASE

If you’re running into limits with Microsoft SQL Server (or other relational databases)
– either in terms of rising costs and complexity, or in scaling to meet your
requirements – this is the time to evaluate a NoSQL database.

NOSQL HAS BECOME A

FOUNDATION FOR MODERN

WEB, MOBILE, AND IOT

APPLICATION DEVELOPMENT.

AT COUCHBASE, WE’VE

ENABLED HUNDREDS OF

ENTERPRISES, AS WELL

AS NUMEROUS GROWTH

COMPANIES AND STARTUPS,

TO DEPLOY NOSQL FOR BETTER

AGILITY, PERFORMANCE,

AND LOWER COSTS

WHITEPAPER 3

Many companies have chosen Couchbase Server either to augment Microsoft SQL
Server and other relational databases, or in some cases replace them.

Their top 5 reasons:

1. Flexibility to scale
Whether running on three nodes or hundreds – in the cloud or on-prem – Couchbase
Server is based on a distributed architecture to scale on commodity hardware with
ease, regardless of the operating system. Couchbase Capella provides a fully hosted,
managed cloud DBaaS to make scaling and operations even easier.

2. Faster performance
Couchbase Server features an integrated cache, memory-optimized indexes,
and memory to-memory replication to deliver consistent, high throughput with
submillisecond response time, at any scale.

3. Up to 40x more affordable
With subscriptions based on the number of instances, Couchbase typically costs
5-40x less than SQL Server and its per-core based licensing – especially on servers
with many cores.

4. Familiarity
Couchbase fuses the best of relational with the best of NoSQL. Data is stored as
flexible JSON, but can be queried with SQL++. With ACID transactions also possible,
your team will have a running start in modernizing.

5. Future-proof
Couchbase supports the growth of use cases. While you may start using Couchbase
for its high-performance caching capabilities, as your application expands, you can
use built-in query, text search, mobile, analytics, syncing, and more as needed.

WHY THE SHIFT TO NOSQL?

Many enterprises have successfully introduced NoSQL by identifying a single
application or service to start with. It could be a new one that is being developed,
or an existing application that’s being refactored. Examples include:

• A high performance, highly available caching service

• A small, independent application (or microservice) with a narrow scope

• A logical or physical service within a large application

• A global service that powers multiple applications across multiple regions

WHITEPAPER 4

IDEAL CANDIDATES HAVE ONE OR MORE OF THE FOLLOWING
CHARACTERISTICS OR REQUIREMENTS:

• �Need to modify the data model to respond to change frequently –
e.g., to accommodate new preferences, new social media accounts, etc.)

• �Ability to read and write JSON documents (semi-structured data) to/from
web and mobile clients

• �Provide low latency, high throughput access to data e.g., users expect interactions
to be instant, and waiting negatively impacts the experience

• �Support thousands to millions of concurrent users – e.g., the number of users
rapidly increases, sometimes exponentially, as when content goes viral

• Support users in any country or region – they’re everywhere

• Support users and be available 24x7

• Store terabytes of data

• Deploy in multiple data centers with an active/active configuration

• �Build enterprise applications – a series of applications with constantly
changing schema requirements, complex or unstructured data

SOME COMMON EXAMPLES OF GOOD USE CASES FOR NOSQL:

•	 Product catalog service

•	 Asset tracking service

•	 Content management service

•	 Application configuration service

•	 Customer management service

•	 File or streaming metadata service

MODELING AND MIGRATING YOUR DATA

Couchbase Server is a document database – data is stored in JSON document
collections, instead of tables. While relational databases rely on an explicit
predefined schema to describe the structure of data, document databases do not –
JSON documents are self-describing. As such, every JSON document includes its own
flexible schema, and it can be changed on demand by changing the document itself.

MANY ENTERPRISES HAVE

SUCCESSFULLY INTRODUCED

NOSQL BY IDENTIFYING A

SINGLE APPLICATION OR

SERVICE TO START WITH.

WHITEPAPER 5

 Figure 1: Relational schema and data vs. self-describing JSON documents

It’s important to understand that JSON documents are not limited to primitive fields.
They can include arrays and objects, and they can be nested, just like applications.
For this reason, there is no “impedance mismatch” between application objects and
JSON documents. No complex object-relational mapping (ORM) solution is required.

 Figure 2: Multiple tables vs. nested data with JSON documents

Just as every row in a table requires a primary key, every document requires an
object ID. Many applications rely on relational databases to automatically generate
the primary key (for example, with the IDENTITY columns in Microsoft SQL Server).
Document databases can use unique keys like UUID/GUID, but applications can also
use natural keys where possible.

WHITEPAPER 6

In a relational database, primary keys are defined per table. It’s not uncommon for
the primary key of different rows in different tables to have the same value. After
all, a row is identified by its table and primary key. However, document databases
do not store documents in tables; in Couchbase Server, they’re stored in collections
(which are then stored in scopes and then buckets). You can store any type of
document within a collection, but typically you will store similar types of documents
within the same collection (i.e., very similar to using a relational table).

Figure 3: Couchbase Server – Documents are stored in buckets,
buckets are partitioned and ditributed aross nodes automatically.

The benefit of using natural keys with a document database is that a document
can be identified by an object ID, even if the collection stores different types
of documents.

For example, consider a single collection with blogs, authors, and comments
stored in separate documents:

author::shane

author::shane::blogs

blog::nosql_fueled_hadoop

blog::nosql_fueled_hadoop::comments

These object IDs not only enable the bucket to store related documents; they’re
also human readable, deterministic, and semantic. In addition, an application can
construct these keys easily to fetch or query using them. Even if you decided to put
these four documents into four separate buckets, these keys will still be beneficial.

A document can be modeled after a row (flat), or it can be modeled after related
rows in multiple tables (nested). However, documents should be modeled based on
how applications interact with the data. While some documents may contain nested
data, others may reference it.

Documents

Collection

Scope

Bucket

Cluster

COUCHBASE SERVER IS A

DOCUMENT DATABASE –

DATA IS STORED IN JSON

DOCUMENTS, NOT IN TABLES.

EVERY JSON DOCUMENT

INCLUDES ITS OWN FLEXIBLE

SCHEMA, AND IT CAN BE

CHANGED ON DEMAND

BY CHANGING THE

DOCUMENT ITSELF.

WHITEPAPER 7

		
		 Figure 4: Related vs. nested JSON documents

In the absence of tables, applications can benefit from including a field in documents
that identifies the type of document. In the figure 4 example, there are user,
address, and account types. The type field can then be indexed to improve query
performance when multiple types of documents are stored within the same bucket.

In relational databases, children reference their parents via foreign keys. However, in
document databases, parents are able to reference their children when appropriate.
That’s because, while a field in a row can only contain a single value, a field within a
document can contain multiple values. In the example of a related model (figure4),
the addresses and accounts fields contain multiple object IDs – one for each
address. However, the shipping and billing object IDs are not required – they are
deterministic.

A document can contain fields, objects, lists, and arrays. In the examples above,
the addresses field contains a list of addresses or references to address.
The accounts field contains an array of accounts or references to accounts.

WHITEPAPER 8

NOTE: Couchbase Server supports atomic counters, and like IDENITY columns in
Microsoft SQL Server, they can be used to automatically generate object IDs for
documents. In addition, counters can be incremented by any amount. Like IDENTITY
columns in Microsoft SQL Server, counters can be incremented by any number, for
example, 50.

MIGRATION TIP: Create object IDs for documents that include the row’s primary key.
For example, if the primary key of a row in the products table is 123, the document
ID is product::123. However, if you are putting documents in a product collection,
you may want to omit “product::” to save memory and disk space.

REFERENCE OR NEST RELATED DATA?

There are two things to consider when deciding how to model related data:

1. Is it a one-to-one or one-to-many relationship?

2. How often is the data accessed?

If it’s a one-to-one or one-to-many relationship (a child has one parent), it may be
better to store the related data as nested objects. This approach results in a simple
data model and reduces or eliminates the need to query multiple documents
However, if it’s a many-to-one or many-to-many relationship (a child has multiple
parents), it may be better to store the related data as separate documents, which
reduces or eliminates the need to maintain duplicate data.

If a majority of the reads are limited to parent data (e.g., first and last name),
it may be better to model the children (e.g., addresses and accounts) as separate
documents. This results in better performance, because the data can be read with
a single key-value operation instead of a query, and reduces bandwidth, because
the amount of data being transferred is smaller. However, if a majority of the reads
include both parent and child data, it may be better to model the children as nested
objects. This approach results in great performance because the data can be read
with a single key-value operation instead of a query.

If a majority of the writes are to the parent or child, but not both, it may be better to
model the children as separate documents. For example, if user profiles are created
with a wizard – first add info, then add addresses, finally add accounts – or if a user
can update an address or account without updating their info. However, if a majority
of writes are to parent and child (both) – for example, there’s a single form to create
or update a user – it may be better to model the children as nested objects.

When to nest? Considerations:

• One-to-one or one-to-many? Nest.

• Most reads are for parent and child together? Nest.

• Many-to-one or many-to-many? Don’t nest.

• Most writes are for parent or child? Don’t nest.

• Most reads are for parent data? Don’t nest.

• Most writes are for parent and child together? Nest.

WHITEPAPER 9

Finally, it may be better to model children as separate documents to reduce
document size and write contention. For example, the number of reviews on a
product may grow indefinitely. If they were embedded, the size of the product
document could become excessive, resulting in slower reads. Consider a blog and
comments. When a blog is first published, there may be a lot of readers posting
comments. If the comments are embedded, many concurrent users will try to
update the same blog document at the same time, resulting in slower writes.
A good compromise may be to store comments as separate threads –
a document for every top-level comment that embeds all replies.

Figure 5: Different documents of the same type can have different schema

WHITEPAPER 10

PERFORMING A MIGRATION?

The easiest and fastest way to get started is to export your relational data to CSV
files, and import them into Couchbase Server. This may not represent the final data
model, but it will enable you to start interacting with Couchbase Server right away.
Couchbase Server includes a command-line utility, cbimport, for importing data in
CSV files.

$ cbimport csv -c couchbase://127.0.0.1 -u Administrator -p

password -b default --scope collection-exp myscope.products -d

file:///products.csv -g %id% -t 4

UNDERSTANDING YOUR ACCESS PATTERNS

NoSQL databases provide data access via key-value APIs, SQL++ query APIs,
or SDKs. The key-value API provides the best performance – since it will often
be direct from an in-memory cache. The query API or language provides the
most power and flexibility – enabling applications to sort, filter, transform, group,
and combine documents. Queries to Couchbase are done using SQL, just like
in a relational database (with extensions for JSON, hence “SQL++”).

KEY VALUE

The key-value API can provide a great deal of data access without the need to
perform queries. In the example below, once you have the object ID of the user
profile document, you can figure out what the object IDs of the address and account
documents are.

NOSQL DATABASES PROVIDE

DATA ACCESS VIA KEY-VALUE

APIS, SQL++, FULL-TEXT

SEARCH, AND MORE.

NOTE: SAME OBJECT,

DIFFERENT STRUCTURE?

AS ILLUSTRATED IN FIGURE 5,

IT’S POSSIBLE FOR THE SAME

FIELD OR OBJECT TO HAVE

A DIFFERENT STRUCTURE IN

DIFFERENT DOCUMENTS.

WHITEPAPER 11

QUERY

The query API or language, combined with proper indexing, can provide a great deal
of power and flexibility without sacrificing performance. Couchbase Server provides
a SQL++ implementation called N1QL, which extends SQL to JSON documents. N1QL
also has support for ANSI joins making it easier for developers to apply their SQL
knowledge to develop applications within Couchbase.

While one of the benefits of storing related data as separate documents is the
ability to read a subset of the data (e.g., shipping address), the same thing can
be accomplished with a query API or language when related data is nested.
For example, to read the billing address from a user profile document that stores
all related data as nested objects.

COUCHBASE SERVER’S

IMPLEMENTATION OF THE

SQL++ STANDARD IS CALLED

N1QL, WHICH EXTENDS SQL

TO JSON DOCUMENTS.

WHITEPAPER 12

In addition, while one of the benefits of storing related data as nested objects is the
ability to access all data with a single read, the same thing can be accomplished
with a query API or language when related data is stored as separate documents.
For example, to read the user profile and accounts and addresses when they are
stored as separate documents.

The query language can be used to perform CRUD operations as an alternative to
the key-value API. This enables applications built on top of a relational database
to migrate all data access by replacing SQL statements with SQL++ statements.
One of the advantages of performing CRUD operations with SQL++ have the ability
to perform partial updates:

N1QL abstracts the data model from the application model. Regardless of how data
is modeled in the database, applications can query it any way they need to by joining
documents, nesting and unnesting them, and more. It provides developers with the
flexibility they need to model data one way and query it in many.

WHITEPAPER 13

INDEXING YOUR DATA

Query performance can be improved by indexing data. NoSQL databases support
indexes to varying degrees – Couchbase Serverincludes comprehensive indexing
support. Below are some indexing examples.

A simple index on the user status:

A composite index on user status and shipping state:

A functional index on shipping state:

NOSQL DATABASES SUPPORT

INDEXES TO VARYING DEGREES

– COUCHBASE SERVER

INCLUDES COMPREHENSIVE

INDEXING SUPPORT.

WHITEPAPER 14

A partial index on user billing state of users with a Visa credit card:

Couchbase Server supports index intersection. A query can scan multiple indexes in
parallel. As a result, it may not be necessary to create multiple indexes that include
the same field, thereby reducing both disk and memory usage. You can also index
a large number of documents and horizontally scale out an index as needed. The
system will transparently partition the index across a number of index nodes using
hash partitioning and will increase the performance and data capacity of the cluster.

CONNECTING TO THE DATABASE

Applications access data in NoSQL databases via clients. Couchbase Server SDKs
are all topology-aware clients (e.g., smart clients) available in many languages:
Java, Node.js, PHP, Python, C, and more. These clients are configured in much
the same way JDBC/ODBC drivers are configured.

		 Figure 6: Creating a connection to a relational database vs. Couchbase Server

A bucket is a higher-level abstraction than a connection, and a cluster can contain
multiple buckets. In the example above, the application can access data in the users
bucket. However, while key-value operations are limited to the users bucket, SQL++
queries are not.

WHITEPAPER 15

Couchbase Server is a distributed database, but applications do not have to pass
in the IP address of every node. However, they should provide more than one IP
address so that if the first node is unavailable or unreachable, they can try to connect
to the next node. After the client connects to a node, it will retrieve the IP address
of the remaining nodes.

Couchbase Server clients also maintain a cluster map, which enables them to
communicate directly with nodes. In addition, the cluster map enables operations
teams to scale out the database without impacting the application. Regardless
of the number of nodes, the application sees a single database. There are no
application changes required to scale from a single node to dozens – the clients
are automatically updated.

In addition, with Couchbase Server, applications no longer have to rely on object-
relational mapping frameworks for data access, because there is no impedance
mismatch between the data model and the object model. In fact, domain objects
are optional. Applications can interact with the data via document objects or by
serializing domain objects to and from JSON.

Figure 7: working with domain objects vs document objects

It’s easy to serialize domain objects to and from JSON, and it may be helpful to do
so for applications with a complex domain model or business logic. However, for
new applications or services, working with document objects will require less code
and provide more flexibility – developers can change the data model without having
to change the application model. For example, you can add a new field to a form
without changing application code.

APPLICATIONS ACCESS DATA

IN NOSQL DATABASES VIA

CLIENTS. COUCHBASE SERVER’S

TOPOLOGY-AWARE SDKS

ARE AVAILABLE IN MANY

LANGUAGES: JAVA, NODE.JS,

.NET, PHP, PYTHON, C,

AND MORE.

NOTE: IN ADDITION TO

THE CLIENTS, THERE ARE

SUPPORTED, CERTIFIED

JDBC/ODBC DATABASE

DRIVERS AVAILABLE FOR

COUCHBASE SERVER.

WHITEPAPER 16

TRANSACTIONS

Similar to a relational database, Couchbase offers ACID transaction support.
Transactions must be initiated by the Couchbase SDK, and can include key-value
operations and/or SQL operations.

Transactions are not required when changing data in a single document structure
as changes within a document are atomic. When architecting new data structures
this should be taken into account as atomic changes to a single document are
lighter weight.

Figure 8: Transactions using the .NET API

WHITEPAPER 17

INSTALLING AND SCALING YOUR DATABASE

One of the key advantages driving the adoption of NoSQL databases with a
distributed architecture is their ability to scale faster, easier, and at a significantly
lower cost than relational databases. While most relational databases are capable
of clustering (e.g., Microsoft SQL Server), they are still limited to scaling up – failover
clustering relies on shared storage while Always-on availability groups are limited
to replication. As a result, more data requires a bigger disk, and more users require
a bigger server. The shared storage not only becomes a bottleneck, it becomes a
single point of failure. In contrast, most NoSQL databases are distributed to scale
out – more data requires more disks, not a bigger one, and more users require more
servers, not a bigger one.

Figure 9: Scaling up vs. scaling out

Couchbase Server’s topology-aware clients and consistent hashing distribute data
within a cluster automatically. Data can be replicated to one or more nodes to
provide high availability, also automatically.

INSTALLING COUCHBASE SERVER

Installing Couchbase Server requires little more than downloading the install binary,
running it, and configuring the database via the web-based administrative console or
CLI. It can also be installed via Docker.

Perhaps the easiest way to get started is with Couchbase’s Database-as-a-Service
(DBaaS), Couchbase Capella™.

COUCHBASE DELIVERED AS A SERVICE

With Capella, database management (setup, ongoing operations, and maintenance)
is automated and streamlined so customers can focus on other areas like application
development and improving time to market.

WHITEPAPER 18

Key benefits include:

Fully managed

• �Automated setup, backups, upgrades, and ongoing management to deliver
an always-on service, reducingyour operational efforts.

Automated scaling in/out and up/down

• �Easily add, remove, or change nodes to meet your current needs.
Couchbase rebalances your data. No application changes needed.

Single pane for multi-cluster, multi-region

• �The Capella control plane manages data across clusters and across clouds,
allowing you to be cloud-provideragnostic. It also provides tools for SQL++
access, document viewing, index creation, and full-text search within the UI.

High availability

• �Capella guarantees the global reliability of your data throughout regions
and availability zones via native replication across geo-aware clusters,
all day, every day.

Self-monitoring, self-healing

• �Capella proactively monitors clusters 24/7 to locate, assess, and resolve
issues automatically.

Security peace of mind

• �In addition to SOC II compliance, Capella delivers end-to-end encryption
from the SDK to the disk and offers granular role-based access control.

Figure 9: Topology-aware clients in Couchbase Server

ONE OF THE KEY ADVANTAGES

DRIVING ADOPTION OF

NOSQL DATABASES WITH A

DISTRIBUTED ARCHITECTURE

IS THEIR ABILITY TO SCALE

FASTER, EASIER, AND AT

SIGNIFICANTLY LOWER COST

THAN RELATIONAL DATABASES.

NOSQL DATABASES SHOULD

BE DEPLOYED AS A CLUSTER

TO REALIZE ALL OF THEIR

BENEFITS.

WHITEPAPER 19

MONITORING AND MANAGING YOUR DEPLOYMENT

Couchbase Server and Couchbase Capella include an integrated, comprehensive
administration console as well as REST and CLI APIs.

While many relational and NoSQL databases require separate administration
tools, Couchbase Server includes an integrated, comprehensive administration
console as well as REST and CLI APIs.

The administration console and the REST/CLI APIs enable administrators to
manage and monitor clusters, both small and large, with minimal effort.
Functionality enabled through the Couchbase admin console includes:

Management, monitoring, and configuration

• Cluster/node/bucket/views

• Cross data center replication (XDCR)

• Database performance, network utilization, resource utilization

Tasks

• Add and remove nodes

• Failover nodes

• Rebalance cluster

Configuration

• Authentication and authorization

• Auditing

Authentication and authorization

• Audit

• Monitor

• View and collect log information

In addition to the administration console and APIs, Couchbase Server includes a
number of command line tools to perform additional tasks such as, among others:

• cbbackupmgr – Full, cumulative, and incremental backup and restore

• cbcollect_info and cbdstats – Gather node and cluster diagnostics (280+ metrics)

• cbq – Run SQL++ queries from the command line

• cbimport/cbexport – Transfer data to and from JSON or CSV files

WHITEPAPER 20

PUTTING IT ALL TOGETHER: HOW TO CONDUCT A SUCCESSFUL
PROOF OF CONCEPTS (POC)

Now that you’re familiar with the key considerations and strategies for transitioning
from a relational database to a NoSQL database – how to select an application, how
to model and access the data, and how to deploy the database – you’re ready to start
a proof of concept.

Couchbase solutions engineers have helped, and continue to help, many enterprises
successfully introduce NoSQL, from planning all the way to post-production.
We encourage everyone to start with a proof of concept.

There are five steps to a successful proof of concept:

1. Select a use case and application

It’s important to remember that the key to successfully introducing a NoSQL
database is to first identify an appropriate use case and select an application.
Try to find an application that can realize one or more of the benefits of a NoSQL
database – better performance and scalability, higher availability, greater agility,
and/or improved operational management.

2. Define the success criteria

It may be difficult to move beyond a proof of concept without defining how to
measure its success. Success criteria vary for different applications. For some,
it may be performance (e.g., 5ms latency in the 95th percentile). For others, it may
be management (e.g., easier to scale and add nodes). It may be faster development
cycles. Whatever it may be, make sure to specify it upfront.

3. Understand the data

Before defining the data model, simply understand the data and the business
domain. At first, the focus should not be on how to define or migrate the data model.
Rather, it should be on understanding the data, independent of how it’s stored in
the database.

4. Identify the access patterns

Next, identify how the data is used and then begin to model it within a NoSQL
database. This will depend very much on how the application reads, writes, and finds
data. The data model can be optimized for different access patterns. In addition, you
have to choose the right data access method – key-value operations, queries, full-text
search, – for the right data access pattern – basic read/ write operations, queries,
or aggregation and reporting.

5. Review the architecture

After completing the proof of concept and measuring the results against its
predefined success criteria, it’s time to begin preparing for production deployment.
This is the time to review the architecture and create a blueprint for production.
Based on the POC development experience, you can identify what worked well
and what could work better – use this knowledge to help define the final
application architecture.

NOW THAT YOU’RE

FAMILIAR WITH THE KEY

CONSIDERATIONS AND

STRATEGIES FOR

TRANSITIONING FROM

A RELATIONAL DATABASE

TO A NOSQL DATABASE,

YOU’RE READY TO START

A PROOF OF CONCEPT.

WHITEPAPER 21

NOSQL SUCCESS OFFERS RICH REWARDS

NoSQL was expressly designed for the requirements of modern web, mobile,
and IoT applications. For enterprises that make the shift to NoSQL, the rewards
are significant: greater agility, faster time to market, easier scalability, better
performance and availability, and lower costs. Developers find that working with
a JSON data model is far more natural than a rigidly defined relational schema,
while operations engineers love the ease of elastically scaling the database
without all the headaches of manual sharding and skyrocketing costs.

If you’re ready to take the next steps and are looking for more specific advice,
we invite you to talk with one of our solutions engineers. At a minimum,
you’ll probably get some helpful insights and best practices for your particular
use case.

For enterprises that make the shift to NoSQL, the rewards are significant:
greater agility, faster time to market, easier scalability, better performance
and availability, and lower costs.

Modern customer experiences need a flexible database platform that can
power applications spanning from cloud to edge and everything in between.
Couchbase’s mission is to simplify how developers and architects develop,
deploy and consume modern applications wherever they are. We have
reimagined the database with our fast, flexible and affordable cloud database
platform Capella, allowing organizations to quickly build applications that
deliver premium experiences to their customers—all with best-in-class price
performance. More than 30% of the Fortune 100 trust Couchbase to power
their modern applications.

For more information, visit www.couchbase.com and follow us on Twitter.

© 2023 Couchbase. All rights reserved.

https://www.couchbase.com/

